欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

OpenCV 图像分割实现Kmean聚类的示例代码

时间:2022-12-03 12:10:06|栏目:Python代码|点击:

1 Kmean图像分割

按照Kmean原理,对图像像素进行聚类。
优点:此方法原理简单,效果显著。
缺点:实践发现对于前景和背景颜色相近或者颜色区分度差的图像效果不显著。
本文对图像进行滤波,主要是为了消除树枝颜色的影响(滤波为非Keman图像分割的必要操作)。

2 流程

(1)读入图片,把图片转化为二维。
(2)根据Kmean算法对图像分割,返回类别标签和各类别中心点。
(3)根据类别标签复制各类别中心点得到结果,在对结果调整到原有尺度。

3 实现

(1)图像分割前添加滤波,消除噪声

## 1 图像分割--Keman聚类
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 1 读入图片
img0 = cv2.imread('bird.png', 1)  # (548,727,3)
img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2RGB)
img_ = cv2.GaussianBlur(img0, (13, 13), 10, 10)
h, w, c = img_.shape
img_blur = img_.reshape([-1, 3])
img_blur = np.float32(img_blur)

# 2 分类
criteria = (
cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
num_clusters = 2
_, label, center_color = cv2.kmeans(img_blur, num_clusters,
                                    None, criteria,
                                    num_clusters,
                                    cv2.KMEANS_RANDOM_CENTERS)
center_color = np.uint8(
    center_color)  # img_blur[398396,3],label[398396,1],center[2,3]
res = center_color[label.ravel()]  # [398396,3]
res = res.reshape([h, w, c])  # res[668044,3]--> [548,727,3]

# 3 显示
plt.subplot(131)
plt.title('origin')
plt.imshow(img0)
plt.subplot(132)
plt.title('img_blur')
plt.imshow(img_)
plt.subplot(133)
plt.title('result')
plt.imshow(res)

plt.show()

在这里插入图片描述

(2)颜色区分低的情况
当颜色区分低时,划分较少的种类,可以达到满意效果。

## 1 图像分割--Keman聚类
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 1 读入图片
img = cv2.imread('luna.png', 1)  # (548,727,3)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w, c = img.shape
img0= img.reshape([-1, 3])
img0 = np.float32(img0)

# 3 分类
criteria = (
cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
num_clusters = 2
_, label, center_color = cv2.kmeans(img0, num_clusters,
                                    None, criteria,
                                    num_clusters,
                                    cv2.KMEANS_RANDOM_CENTERS)
center_color = np.uint8(
    center_color)  # img_blur[398396,3],label[398396,1],center[2,3]
res = center_color[label.ravel()]  # [398396,3]

res = res.reshape([h, w, c])  # res[668044,3]--> [548,727,3]

plt.subplot(121)
plt.title('origin')
plt.imshow(img)
plt.subplot(122)
plt.title('result')
plt.imshow(res)

plt.show()

在这里插入图片描述

注: 可以改变中心点的数值,调整分割后图像的颜色。

center_color = np.uint8(
    center_color)  
## 调整显示颜色
center_color[0]=[0,0,255]
center_color[1]=[255,0,0]

res = center_color[label.ravel()] 

在这里插入图片描述

上一篇:Pycharm 2019 破解激活方法图文详解

栏    目:Python代码

下一篇:python中数组array和列表list的基本用法及区别解析

本文标题:OpenCV 图像分割实现Kmean聚类的示例代码

本文地址:http://www.codeinn.net/misctech/220430.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有