当前位置:主页 > 软件编程 > Python代码 >

Python基于pyCUDA实现GPU加速并行计算功能入门教程

时间:2020-10-08 13:28:25 | 栏目:Python代码 | 点击:

本文实例讲述了Python基于pyCUDA实现GPU加速并行计算功能。分享给大家供大家参考,具体如下:

Nvidia的CUDA 架构为我们提供了一种便捷的方式来直接操纵GPU 并进行编程,但是基于 C语言的CUDA实现较为复杂,开发周期较长。而python 作为一门广泛使用的语言,具有 简单易学、语法简单、开发迅速等优点。作为第四种CUDA支持语言,相信python一定会 在高性能计算上有杰出的贡献?CpyCUDA。

pyCUDA特点

pyCUDA的工作流程

具体的调用流程如下:

调用基本例子

import pycuda.autoinit
import pycuda.driver as drv
import numpy
from pycuda.compiler import SourceModule
mod = SourceModule("""
__global__ void multiply_them(float *dest, float *a, float *b)
{
 const int i = threadIdx.x;
 dest[i] = a[i] * b[i];
}
""")
multiply_them = mod.get_function("multiply_them")
a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)
dest = numpy.zeros_like(a)
multiply_them(
  drv.Out(dest), drv.In(a), drv.In(b),
  block=(400,1,1), grid=(1,1))
print dest-a*b
#tips: copy from hello_gpu.py in the package.

具体内容

补充内容:

对于GPU 加速python还有功能包,例如处理图像的pythonGPU加速包―― pyGPU
以及专门的GPU 加速python机器学习包―― scikitCUDA
Matlab对应的工具包并行计算工具箱GPU计算技术
以及教程介绍文档

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:

相关文章