时间:2021-03-14 09:51:09 | 栏目:Redis | 点击:次
题外话:
小编先给大家推荐一个不错的微信公众号:
感兴趣的朋友可以关注小编的微信公众号【码农那点事儿】,更多网页制作特效源码及学习干货哦!!!
需求
前段时间,做了一个世界杯竞猜积分排行榜。对世界杯64场球赛胜负平进行猜测,猜对+1分,错误+0分,一人一场只能猜一次。
1.展示前一百名列表。
2.展示个人排名(如:张三,您当前的排名106579)。
分析
一开始打算直接使用mysql数据库来做,遇到一个问题,每个人的分数都会变化,如何能够获取到个人的排名呢?数据库可以通过分数进行row_num排序,但是这个方法需要进行全表扫描,当参与的人数达到10000的时候查询就非常慢了。
redis的排行榜功能就完美锲合了这个需求。来看看我是怎么实现的吧。
实现
一.redis sorts sets简介
Sorted Sets数据类型就像是set和hash的混合。与sets一样,Sorted Sets是唯一的,不重复的字符串组成。可以说Sorted Sets也是Sets的一种。
Sorted Sets是通过Skip List(跳跃表)和hash Table(哈希表)的双端口数据结构实现的,因此每次添加元素时,Redis都会执行O(log(N))操作。所以当我们要求排序的时候,Redis根本不需要做任何工作了,早已经全部排好序了。元素的分数可以随时更新。
二.springboot 中使用RedisTemplate
本文主要通过redisTemplate来操作redis,当然也可以使用redis-client,看个人喜好.
我在本机开启了一个单点的redis,配置文件如下
server: port: 9001 spring: redis: database: 0 url: redis://user:123@127.0.0.1:6379 host: 127.0.0.1 password: 123 port: 6379 ssl: false timeout: 5000
Maven依赖引入如下
<parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.0.4.RELEASE</version> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> </dependency> </dependencies>
三.代码实现
1.注入redis,将key声明为常量SCORE_RANK
@Autowired private StringRedisTemplate redisTemplate; public static final String SCORE_RANK = "score_rank";
2.新增默认排行数据
这里使用for循环创建集合,再使用批量新增10万条数据
/** * 批量新增 */ @Test public void batchAdd() { Set<ZSetOperations.TypedTuple<String>> tuples = new HashSet<>(); long start = System.currentTimeMillis(); for (int i = 0; i < 100000; i++) { DefaultTypedTuple<String> tuple = new DefaultTypedTuple<>("张三" + i, 1D + i); tuples.add(tuple); } System.out.println("循环时间:" +( System.currentTimeMillis() - start)); Long num = redisTemplate.opsForZSet().add(SCORE_RANK, tuples); System.out.println("批量新增时间:" +(System.currentTimeMillis() - start)); System.out.println("受影响行数:" + num); }
//输出
循环时间:56
批量新增时间:1015
受影响行数:100000
3.获取前10名(根据分数倒序)
提供了两种获取方法,返回值一个带有score,一个没有
/** * 获取排行列表 */ @Test public void list() { Set<String> range = redisTemplate.opsForZSet().reverseRange(SCORE_RANK, 0, 10); System.out.println("获取到的排行列表:" + JSON.toJSONString(range)); Set<ZSetOperations.TypedTuple<String>> rangeWithScores = redisTemplate.opsForZSet().reverseRangeWithScores(SCORE_RANK, 0, 10); System.out.println("获取到的排行和分数列表:" + JSON.toJSONString(rangeWithScores)); }
//输出 获取到的排行列表:["张三99999","张三99998","张三99997","张三99996","张三99995","张三99994","张三99993","张三99992","张三99991","张三99990","张三99989"] 获取到的排行和分数列表:[{"score":100000.0,"value":"张三99999"},{"score":99999.0,"value":"张三99998"},{"score":99998.0,"value":"张三99997"},{"score":99997.0,"value":"张三99996"},{"score":99996.0,"value":"张三99995"},{"score":99995.0,"value":"张三99994"},{"score":99994.0,"value":"张三99993"},{"score":99993.0,"value":"张三99992"},{"score":99992.0,"value":"张三99991"},{"score":99991.0,"value":"张三99990"},{"score":99990.0,"value":"张三99989"}]
4.新增李四的分数
将“李四”加入到排行榜中,redis会在插入的时候进行,在取出的时候就可以直接取出,不需要再做排序操作
/** * 单个新增 */ @Test public void add() { redisTemplate.opsForZSet().add(SCORE_RANK, "李四", 8899); }
5.获取李四单人的排行
/** * 获取单个的排行 */ @Test public void find(){ Long rankNum = redisTemplate.opsForZSet().reverseRank(SCORE_RANK, "李四"); System.out.println("李四的个人排名:" + rankNum); Double score = redisTemplate.opsForZSet().score(SCORE_RANK, "李四"); System.out.println("李四的分数:" + score); }
//输出
李四的个人排名:91101
李四的分数:8899.0
6.统计分数区间人数
redis还提供了统计分数区间的方法,如下
/** * 统计两个分数之间的人数 */ @Test public void count(){ Long count = redisTemplate.opsForZSet().count(SCORE_RANK, 8001, 9000); System.out.println("统计8001-9000之间的人数:" + count); }
//输出
统计8001-9000之间的人数:1001
7.获取集合的基数(数量大小)
/** * 获取整个集合的基数(数量大小) */ @Test public void zCard(){ Long aLong = redisTemplate.opsForZSet().zCard(SCORE_RANK); System.out.println("集合的基数为:" + aLong); }
//输出
集合的基数为:100001
8.使用加法操作分数
这个方法是直接在原有的score上使用加法;如果没有这个元素,则会创建,并且score初始为0.再使用加法
/** * 使用加法操作分数 */ @Test public void incrementScore(){ Double score = redisTemplate.opsForZSet().incrementScore(SCORE_RANK, "李四", 1000); System.out.println("李四分数+1000后:" + score); }
//输出
李四分数+1000后:9899.0
四.归纳
在以上测试类中我们使用了redis的那些功能呢?在以上的例子中我们使用了单个新增,批量新增,获取前十,获取单人排名这些操作,但是redisTemplate还提供了更多的方法。
新增or更新
有三种方式,一种是单个,一种是批量,对分数使用加法(如果不存在,则从0开始加)。
//单个新增or更新 Boolean add(K key, V value, double score); //批量新增or更新 Long add(K key, Set<TypedTuple<V>> tuples); //使用加法操作分数 Double incrementScore(K key, V value, double delta);
删除
删除提供了三种方式:通过key/values删除,通过排名区间删除,通过分数区间删除。
//通过key/value删除 Long remove(K key, Object... values); //通过排名区间删除 Long removeRange(K key, long start, long end); //通过分数区间删除 Long removeRangeByScore(K key, double min, double max);
查
1.列表查询:
分为两大类,正序和逆序。以下只列表正序的,逆序的只需在方法前加上reverse即可
//通过排名区间获取列表值集合 Set<V> range(K key, long start, long end); //通过排名区间获取列表值和分数集合 Set<TypedTuple<V>> rangeWithScores(K key, long start, long end); //通过分数区间获取列表值集合 Set<V> rangeByScore(K key, double min, double max); //通过分数区间获取列表值和分数集合 Set<TypedTuple<V>> rangeByScoreWithScores(K key, double min, double max); //通过Range对象删选再获取集合排行 Set<V> rangeByLex(K key, Range range); //通过Range对象删选再获取limit数量的集合排行 Set<V> rangeByLex(K key, Range range, Limit limit);
2.单人查询
可获取单人排行,和通过key/value获取分数。以下只列表正序的,逆序的只需在方法前加上reverse即可
//获取个人排行 Long rank(K key, Object o); //获取个人分数 Double score(K key, Object o);
统计
统计分数区间的人数,统计集合基数。
//统计分数区间的人数 Long count(K key, double min, double max); //统计集合基数 Long zCard(K key);
结语
以上就是redis中使用排行榜功能的一些例子,和对redis的操作方法了。redis不仅仅只是作为缓存,它更是数据库,提供了许多的功能,我们都可以好好的利用。
在这里我使用redis来实现了世界杯积分排行的展示,无论是在批量更新或是获取个人排行等方便,都有着很高效率,也降低了对数据库操作的压力,达到了很好的效果。