当前位置:主页 > 软件编程 > Python代码 >

Pyspark获取并处理RDD数据代码实例

时间:2021-03-10 09:26:41 | 栏目:Python代码 | 点击:

弹性分布式数据集(RDD)是一组不可变的JVM对象的分布集,可以用于执行高速运算,它是Apache Spark的核心。

在pyspark中获取和处理RDD数据集的方法如下:

1. 首先是导入库和环境配置(本测试在linux的pycharm上完成)

import os
from pyspark import SparkContext, SparkConf
from pyspark.sql.session import SparkSession
os.environ["PYSPARK_PYTHON"]="/usr/bin/python3"
conf = SparkConf().setAppName('test_rdd')
sc = SparkContext('local', 'test', conf=conf)
spark = SparkSession(sc)

2. 然后,提供hdfs分区数据的路径或者分区表名

txt_File = r"hdfs://host:port/apps/hive/warehouse/数据库名.db/表名/分区名/part-m-00029.deflate" # part-m-00029.deflate
# txt_File = r"hdfs://host:port/apps/hive/warehouse/数据库名.db/表名" # hive table

3. sc.textFile进行读取,得到RDD格式数据<还可以用 spark.sparkContext.parallelize(data) 来获取RDD数据>,参数中还可设置数据被划分的分区数

txt_ = sc.textFile(txt_File)

4. 基本操作:

您可能感兴趣的文章:

相关文章