时间:2021-03-04 13:52:45 | 栏目:Mysql | 点击:次
Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
Sqoop中一大亮点就是可以通过hadoop的mapreduce把数据从关系型数据库中导入数据到HDFS。
一、安装sqoop
1、下载sqoop压缩包,并解压
压缩包分别是:sqoop-1.2.0-CDH3B4.tar.gz,hadoop-0.20.2-CDH3B4.tar.gz, Mysql JDBC驱动包mysql-connector-java-5.1.10-bin.jar
[root@node1 ~]# ll
drwxr-xr-x 15 root root 4096 Feb 22 2011 hadoop-0.20.2-CDH3B4 -rw-r--r-- 1 root root 724225 Sep 15 06:46 mysql-connector-java-5.1.10-bin.jar drwxr-xr-x 11 root root 4096 Feb 22 2011 sqoop-1.2.0-CDH3B4
2、将sqoop-1.2.0-CDH3B4拷贝到/home/hadoop目录下,并将Mysql JDBC驱动包和hadoop-0.20.2-CDH3B4下的hadoop-core-0.20.2-CDH3B4.jar至sqoop-1.2.0-CDH3B4/lib下,最后修改一下属主。
[root@node1 ~]# cp mysql-connector-java-5.1.10-bin.jar sqoop-1.2.0-CDH3B4/lib [root@node1 ~]# cp hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2-CDH3B4.jar sqoop-1.2.0-CDH3B4/lib [root@node1 ~]# chown -R hadoop:hadoop sqoop-1.2.0-CDH3B4 [root@node1 ~]# mv sqoop-1.2.0-CDH3B4 /home/hadoop [root@node1 ~]# ll /home/hadoop
total 35748 -rw-rw-r-- 1 hadoop hadoop 343 Sep 15 05:13 derby.log drwxr-xr-x 13 hadoop hadoop 4096 Sep 14 16:16 hadoop-0.20.2 drwxr-xr-x 9 hadoop hadoop 4096 Sep 14 20:21 hive-0.10.0 -rw-r--r-- 1 hadoop hadoop 36524032 Sep 14 20:20 hive-0.10.0.tar.gz drwxr-xr-x 8 hadoop hadoop 4096 Sep 25 2012 jdk1.7 drwxr-xr-x 12 hadoop hadoop 4096 Sep 15 00:25 mahout-distribution-0.7 drwxrwxr-x 5 hadoop hadoop 4096 Sep 15 05:13 metastore_db -rw-rw-r-- 1 hadoop hadoop 406 Sep 14 16:02 scp.sh drwxr-xr-x 11 hadoop hadoop 4096 Feb 22 2011 sqoop-1.2.0-CDH3B4 drwxrwxr-x 3 hadoop hadoop 4096 Sep 14 16:17 temp drwxrwxr-x 3 hadoop hadoop 4096 Sep 14 15:59 user
3、配置configure-sqoop,注释掉对于HBase和ZooKeeper的检查
[root@node1 bin]# pwd
/home/hadoop/sqoop-1.2.0-CDH3B4/bin
[root@node1 bin]# vi configure-sqoop
#!/bin/bash # # Licensed to Cloudera, Inc. under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. . . . # Check: If we can't find our dependencies, give up here. if [ ! -d "${HADOOP_HOME}" ]; then echo "Error: $HADOOP_HOME does not exist!" echo 'Please set $HADOOP_HOME to the root of your Hadoop installation.' exit 1 fi #if [ ! -d "${HBASE_HOME}" ]; then # echo "Error: $HBASE_HOME does not exist!" # echo 'Please set $HBASE_HOME to the root of your HBase installation.' # exit 1 #fi #if [ ! -d "${ZOOKEEPER_HOME}" ]; then # echo "Error: $ZOOKEEPER_HOME does not exist!" # echo 'Please set $ZOOKEEPER_HOME to the root of your ZooKeeper installation.' # exit 1 #fi
4、修改/etc/profile和.bash_profile文件,添加Hadoop_Home,调整PATH
[hadoop@node1 ~]$ vi .bash_profile
# .bash_profile # Get the aliases and functions if [ -f ~/.bashrc ]; then . ~/.bashrc fi # User specific environment and startup programs HADOOP_HOME=/home/hadoop/hadoop-0.20.2 PATH=$HADOOP_HOME/bin:$PATH:$HOME/bin export HIVE_HOME=/home/hadoop/hive-0.10.0 export MAHOUT_HOME=/home/hadoop/mahout-distribution-0.7 export PATH HADOOP_HOME
二、测试Sqoop
1、查看mysql中的数据库:
[hadoop@node1 bin]$ ./sqoop list-databases --connect jdbc:mysql://192.168.1.152:3306/ --username sqoop --password sqoop
13/09/15 07:17:16 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 13/09/15 07:17:17 INFO manager.MySQLManager: Executing SQL statement: SHOW DATABASES information_schema mysql performance_schema sqoop test
2、将mysql的表导入到hive中:
[hadoop@node1 bin]$ ./sqoop import --connect jdbc:mysql://192.168.1.152:3306/sqoop --username sqoop --password sqoop --table test --hive-import -m 1
13/09/15 08:15:01 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead. 13/09/15 08:15:01 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override 13/09/15 08:15:01 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc. 13/09/15 08:15:01 INFO tool.CodeGenTool: Beginning code generation 13/09/15 08:15:01 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1 13/09/15 08:15:02 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1 13/09/15 08:15:02 INFO orm.CompilationManager: HADOOP_HOME is /home/hadoop/hadoop-0.20.2/bin/.. 13/09/15 08:15:02 INFO orm.CompilationManager: Found hadoop core jar at: /home/hadoop/hadoop-0.20.2/bin/../hadoop-0.20.2-core.jar 13/09/15 08:15:03 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/a71936fd2bb45ea6757df22751a320e3/test.jar 13/09/15 08:15:03 WARN manager.MySQLManager: It looks like you are importing from mysql. 13/09/15 08:15:03 WARN manager.MySQLManager: This transfer can be faster! Use the --direct 13/09/15 08:15:03 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path. 13/09/15 08:15:03 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql) 13/09/15 08:15:03 INFO mapreduce.ImportJobBase: Beginning import of test 13/09/15 08:15:04 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1 13/09/15 08:15:05 INFO mapred.JobClient: Running job: job_201309150505_0009 13/09/15 08:15:06 INFO mapred.JobClient: map 0% reduce 0% 13/09/15 08:15:34 INFO mapred.JobClient: map 100% reduce 0% 13/09/15 08:15:36 INFO mapred.JobClient: Job complete: job_201309150505_0009 13/09/15 08:15:36 INFO mapred.JobClient: Counters: 5 13/09/15 08:15:36 INFO mapred.JobClient: Job Counters 13/09/15 08:15:36 INFO mapred.JobClient: Launched map tasks=1 13/09/15 08:15:36 INFO mapred.JobClient: FileSystemCounters 13/09/15 08:15:36 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=583323 13/09/15 08:15:36 INFO mapred.JobClient: Map-Reduce Framework 13/09/15 08:15:36 INFO mapred.JobClient: Map input records=65536 13/09/15 08:15:36 INFO mapred.JobClient: Spilled Records=0 13/09/15 08:15:36 INFO mapred.JobClient: Map output records=65536 13/09/15 08:15:36 INFO mapreduce.ImportJobBase: Transferred 569.6514 KB in 32.0312 seconds (17.7842 KB/sec) 13/09/15 08:15:36 INFO mapreduce.ImportJobBase: Retrieved 65536 records. 13/09/15 08:15:36 INFO hive.HiveImport: Removing temporary files from import process: test/_logs 13/09/15 08:15:36 INFO hive.HiveImport: Loading uploaded data into Hive 13/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1 13/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1 13/09/15 08:15:41 INFO hive.HiveImport: Logging initialized using configuration in jar:file:/home/hadoop/hive-0.10.0/lib/hive-common-0.10.0.jar!/hive-log4j.properties 13/09/15 08:15:41 INFO hive.HiveImport: Hive history file=/tmp/hadoop/hive_job_log_hadoop_201309150815_1877092059.txt 13/09/15 08:16:10 INFO hive.HiveImport: OK 13/09/15 08:16:10 INFO hive.HiveImport: Time taken: 28.791 seconds 13/09/15 08:16:11 INFO hive.HiveImport: Loading data to table default.test 13/09/15 08:16:12 INFO hive.HiveImport: Table default.test stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 583323, raw_data_size: 0] 13/09/15 08:16:12 INFO hive.HiveImport: OK 13/09/15 08:16:12 INFO hive.HiveImport: Time taken: 1.704 seconds 13/09/15 08:16:12 INFO hive.HiveImport: Hive import complete.
三、Sqoop 命令
Sqoop大约有13种命令,和几种通用的参数(都支持这13种命令),这里先列出这13种命令。
接着列出Sqoop的各种通用参数,然后针对以上13个命令列出他们自己的参数。Sqoop通用参数又分Common arguments,Incremental import arguments,Output line formatting arguments,Input parsing arguments,Hive arguments,HBase arguments,Generic Hadoop command-line arguments,下面说明一下几个常用的命令:
1.Common arguments
通用参数,主要是针对关系型数据库链接的一些参数
1)列出mysql数据库中的所有数据库
sqoop list-databases ?Cconnect jdbc:mysql://localhost:3306/ ?Cusername root ?Cpassword 123456
2)连接mysql并列出test数据库中的表
sqoop list-tables ?Cconnect jdbc:mysql://localhost:3306/test ?Cusername root ?Cpassword 123456
命令中的test为mysql数据库中的test数据库名称 username password分别为mysql数据库的用户密码
3)将关系型数据的表结构复制到hive中,只是复制表的结构,表中的内容没有复制过去。
sqoop create-hive-table ?Cconnect jdbc:mysql://localhost:3306/test ?Ctable sqoop_test ?Cusername root ?Cpassword 123456 ?Chive-table test
其中 ?Ctable sqoop_test为mysql中的数据库test中的表 ?Chive-table
test 为hive中新建的表名称
4)从关系数据库导入文件到hive中
sqoop import ?Cconnect jdbc:mysql://localhost:3306/zxtest ?Cusername root ?Cpassword 123456 ?Ctable sqoop_test ?Chive-import ?Chive-table s_test -m 1
5)将hive中的表数据导入到mysql中,在进行导入之前,mysql中的表
hive_test必须已经提起创建好了。
sqoop export ?Cconnect jdbc:mysql://localhost:3306/zxtest ?Cusername root ?Cpassword root ?Ctable hive_test ?Cexport-dir /user/hive/warehouse/new_test_partition/dt=2012-03-05
6)从数据库导出表的数据到HDFS上文件
./sqoop import ?Cconnect jdbc:mysql://10.28.168.109:3306/compression ?Cusername=hadoop ?Cpassword=123456 ?Ctable HADOOP_USER_INFO -m 1 ?Ctarget-dir /user/test
7)从数据库增量导入表数据到hdfs中
./sqoop import ?Cconnect jdbc:mysql://10.28.168.109:3306/compression ?Cusername=hadoop ?Cpassword=123456 ?Ctable HADOOP_USER_INFO -m 1 ?Ctarget-dir /user/test ?Ccheck-column id ?Cincremental append ?Clast-value 3