时间:2021-02-01 09:54:25 | 栏目:C代码 | 点击:次
很早以前,在学习使用 Python 的deque
容器时,我写了一篇文章python3 deque 双向队列创建与使用方法分析。最近需要压测线上服务的性能,又不愿意总是在 QA 那边排队,于是需要自己写一个压测用的客户端。其中一个核心需求就是要实现 QPS 限制。
于是,终究逃不开要在 C++ 中实现一个线程安全的频率限制器。
设计思路
所谓频率限制,就是要在一个时间段(inteval)中,限制操作的次数(limit)。这又可以引出两种强弱不同的表述:
不难发现,强表述通过「滑动窗口」的方式,不仅限制了频率,还要求了操作在时间上的均匀性。前作的频率限制器,实际上对应了这里的强表述。但实际工程中,我们通常只需要实现弱表述的频率限制器就足够使用了。
对于弱表述,实现起来主要思路如下:
当操作计数(count)小于限制(limit)时直接放行;
单线程实现
在不考虑线程安全时,不难给出这样的实现。
struct ms_clock { using rep = std::chrono::milliseconds::rep; using period = std::chrono::milliseconds::period; using duration = std::chrono::duration<rep, period>; using time_point = std::chrono::time_point<ms_clock, duration>; static time_point now() noexcept { return time_point(std::chrono::duration_cast<duration>( std::chrono::steady_clock::now().time_since_epoch())); } }; } // namespace __details class RateLimiter { public: using clock = __details::ms_clock; // 1. private: const uint64_t limit_; const clock::duration interval_; const clock::rep interval_count_; mutable uint64_t count_{std::numeric_limits<uint64_t>::max()}; // 2.a. mutable clock::rep timestamp_{0}; // 2.b. public: constexpr RateLimiter(uint64_t limit, clock::duration interval) : limit_(limit), interval_(interval), interval_count_(interval_.count()) {} RateLimiter(const RateLimiter&) = delete; // 3.a. RateLimiter& operator=(const RateLimiter&) = delete; // 3.b. RateLimiter(RateLimiter&&) = delete; // 3.c. RateLimiter& operator=(RateLimiter&&) = delete; // 3.d. bool operator()() const; double qps() const { return 1000.0 * this->limit_ / this->interval_count_; } }; bool RateLimiter::operator()() const { auto orig_count = this->count_++; if (orig_count < this->limit_) { // 4. return true; } else { auto ts = this->timestamp_; auto now = clock::now().time_since_epoch().count(); if (now - ts < this->interval_count_) { // 5. return false; } this->timestamp_ = now; this->count_ = 1; return true; } }
这里,
(1) 表明频率限制器使用单位为毫秒的时钟。在实际使用时,也可以按需改成微妙甚至纳秒。
(2) 使用mutable
修饰内部状态count_
和timestamp_
。这是因为两个limit_
和interval_
相同的频率限制器,在逻辑上是等价的,但他们的内部状态却不一定相同。因此,为了让const
成员函数能够修改内部状态(而不改变逻辑等价),我们要给内部状态数据成员加上mutable
修饰。
(2.a) 处将count_
设置为类型可表示的最大值是为了让
(4) 的判断失败,而对timestamp_
进行初始化。
(2.b) 处将timestamp_
设置为0
则是基于同样的原因,让 (5) 的判断失败。
(2.a) 和 (2.b) 处通过巧妙的初值设计,将初始化状态与后续正常工作状态的逻辑统一了起来,而无须丑陋的判断。
(3) 禁止了对象的拷贝和移动。这是因为一个频率限制器应绑定一组操作,而不应由两组或更多组操作共享(对于拷贝的情形),或是中途失效(对于移动的情形)。
如此一来,函数调用运算符就忠实地实现了前述逻辑。
多线程改造
第一步改造
当有多线程同时调用RateLimiter::operator()
时,显而易见,在count_
和timestamp_
上会产生竞争。我们有两种办法解决这个问题:要不然加锁,要不然把count_
和timestamp_
设为原子变量然后用原子操作解决问题。于是,对函数调用运算符,我们有如下第一步的改造。
class RateLimiter { // 其余保持不变 private: mutable std::atomic<uint64_t> count_{std::numeric_limits<uint64_t>::max()}; // 1.a. mutable std::atomic<clock::rep> timestamp_{0}; // 1.b. // 其余保持不变 }; bool RateLimiter::operator()() const { auto orig_count = this->count_.fetch_add(1UL); // 2. if (orig_count < this->limit_) { return true; } else { auto ts = this->timestamp_.load(); // 3. auto now = clock::now().time_since_epoch().count(); if (now - ts < this->interval_count_) { return false; } this->timestamp_.store(now); // 4. this->count_.store(1UL); // 5. return true; } }
这里,
count_
和timestamp_
声明为原子的,从而方便后续进行原子操作。这样看起来很完美,但其实是有 bug 的。我们重点关注 (4) 这里。(4) 的本意是更新timestamp_
,以备下一次orig_count >= this->limit_
时进行判断。准确设置这一timestamp
是频率限制器正确工作的基石。但是,如果有两个(或更多)线程,同时走到了 (4)会发生什么?
timestamp_
的值究竟是什么,我们完全不可预期。count_
置为1
。但是你想,频率限制器先后放行了两次操作,但为什么count_
是1
呢?这是不是就「偷跑」了一次操作?为此,我们要保证只有一个线程会真正设置timestamp_
,而拒绝其他同样走到 (4) 位置的线程的操作,以避免其重复设置timestamp_
以及错误地将count_
再次置为1
。
第二步改进
于是有以下改进。
bool RateLimiter::operator()() const { auto orig_count = this->count_.fetch_add(1UL); // 3. if (orig_count < this->limit_) { // 4. return true; } else { auto ts = this->timestamp_.load(); auto now = clock::now().time_since_epoch().count(); if (now - ts < this->interval_count_) { // 5. return false; } if (not this->timestamp_.compare_and_exchange_strong(ts, now)) { // 1. return false; } this->count_.store(1UL); // 2. return true; } }
这里,(1) 是一个 CAS 原子操作。它会原子地比较timestamp_
和ts
的值(Compare):若他们相等,则将now
的值写入timestamp_
(Swap),并返回true
;若他们不相等,则将timestamp_
的值写入ts
,并返回false
。如果没有其他线程抢先修改timestamp_
的值,那么 CAS 操作应该成功并返回true
,继续执行后面的代码;否则,说明其他线程已经抢先修改了timestamp_
,当前线程的操作被记入上一个周期而被频率限制器拒绝。
现在要考虑 (2)。如果执行完 (1) 之后立即立刻马上没有任何延迟地执行 (2),那么当然一切大吉。但如果这时候当前线程被切出去,会发生什么?我们要分情况讨论。
如果ts == 0
,也就是「当前线程」是频率限制器第一次修改timestamp_
。于是,当前线程可能会在 (3) 处将count_
(溢出地)自增为0
,从而可能有其他线程通过 (4)。此时,当前线程在当前分片有可能应当被拒绝操作。为此,我们需要在 (1) 和 (2) 之间做额外的判断。
if (ts == 0) { auto orig_count = this->count.fetch_add(1UL); return (orig_count < this->limit_); }
如果ts != 0
,也就是「当前线程」并非频率限制器第一次修改timestamp_
。那么其他线程在 (4) 处必然判断失败,但在 (5) 处的判断可能成功,从而可能继续成功执行 (1),从而接连两次执行 (2)。但这不影响正确性。因为通过 (5) 表明相对当前线程填入的timestamp_
,已经由过了一个时间段(interval),而在这个时间段里,只有当前线程的一次操作会被接受。
第三次改进
由此,我们得到:
bool RateLimiter::operator()() const { auto orig_count = this->count_.fetch_add(1UL); if (orig_count < this->limit_) { return true; } else { auto ts = this->timestamp_.load(); auto now = clock::now().time_since_epoch().count(); if (now - ts < this->interval_count_) { return false; } if (not this->timestamp_.compare_and_exchange_strong(ts, now)) { return false; } if (ts == 0) { auto orig_count = this->count.fetch_add(1UL); return (orig_count < this->limit_); } this->count_.store(1UL); return true; } }
至此,我们的代码在逻辑上已经成立了,接下来要做一些性能方面的优化。
原子操作默认采用std::memory_order_seq_cst
的内存模型。这是 C++ 中最严格的内存模型,它有两个保证:
为了实现顺序一致性(sequential consistency),编译器会使用很多对抗编译器优化和 CPU 乱序执行(Out-of-Order Execution)的手段,因而性能较差。对于此处的count_
,我们无需顺序一致性模型,只需要获取释放模型(Aquire-Release)模型就足够了。
第四次改进
于是有第四次改进:
bool RateLimiter::operator()() const { auto orig_count = this->count_.fetch_add(1UL, std::memory_order_acq_rel); if (orig_count < this->limit_) { return true; } else { auto ts = this->timestamp_.load(); auto now = clock::now().time_since_epoch().count(); if (now - ts < this->interval_count_) { return false; } if (not this->timestamp_.compare_and_exchange_strong(ts, now)) { return false; } if (ts == 0) { auto orig_count = this->count.fetch_add(1UL, std::memory_order_acq_rel); return (orig_count < this->limit_); } this->count_.store(1UL, std::memory_order_release); return true; } }
至此,我们就完整实现了一个频率限制器,可以愉快地开始拉 QPS 压测了!
总结