当前位置:主页 > 软件编程 > Python代码 >

python 计算平均平方误差(MSE)的实例

时间:2021-01-10 11:07:01 | 栏目:Python代码 | 点击:

我们要编程计算所选直线的平均平方误差(MSE), 即数据集中每个点到直线的Y方向距离的平方的平均数,表达式如下:

MSE=1n∑i=1n(yi−mxi−b)2

最初麻烦的写法

# TODO 实现以下函数并输出所选直线的MSE
def calculateMSE(X,Y,m,b):
  in_bracket = []
  for i in range(len(X)):
    num = Y[i] - m*X[i] - b
    num = pow(num,2)
    in_bracket.append(num)
    
  all_sum = sum(in_bracket)
  MSE = all_sum / len(X)
 
  return MSE
 
print(calculateMSE(X,Y,m1,b1))

优化后 zip 太常用了

# TODO 实现以下函数并输出所选直线的MSE
def calculateMSE(X,Y,m,b): 
  return sum([(y-m*x -b)**2 for x,y in zip(X,Y)])/len(X)

您可能感兴趣的文章:

相关文章