时间:2023-03-20 10:27:53 | 栏目:Python代码 | 点击:次
Xception是继Inception后提出的对Inception v3的另一种改进,学一学总是好的
Xception是谷歌公司继Inception后,提出的InceptionV3的一种改进模型,其改进的主要内容为采用depthwise separable convolution来替换原来Inception v3中的多尺寸卷积核特征响应操作。
在讲Xception模型之前,首先要讲一下什么是depthwise separable convolution(深度可分离卷积块)。
深度可分离卷积块由两个部分组成,分别是深度可分离卷积和1x1普通卷积,深度可分离卷积的卷积核大小一般是3x3的,便于理解的话我们可以把它当作是特征提取,1x1的普通卷积可以完成通道数的调整。
下图为深度可分离卷积块的结构示意图:
深度可分离卷积块的目的是使用更少的参数来代替普通的3x3卷积。
我们可以进行一下普通卷积和深度可分离卷积块的对比:
假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,最后可得到所需的32个输出通道,所需参数为16×32×3×3=4608个。
应用深度可分离卷积,用16个3×3大小的卷积核分别遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,所需参数为16×3×3+16×32×1×1=656个。
可以看出来depthwise separable convolution可以减少模型的参数。
通俗地理解深度可分离卷积结构块,就是3x3的卷积核厚度只有一层,然后在输入张量上一层一层地滑动,每一次卷积完生成一个输出通道,当卷积完成后,再利用1x1的卷积调整厚度。
(视频中有些许错误,感谢zl960929的提醒,Xception使用的深度可分离卷积块SeparableConv2D也就是先深度可分离卷积再进行1x1卷积。)
对于Xception模型而言,其一共可以分为3个flow,分别是Entry flow、Middle flow、Exit flow;
分为14个block,其中Entry flow中有4个、Middle flow中有8个、Exit flow中有2个。
具体结构如下:
其内部主要结构就是残差卷积网络搭配SeparableConv2D层实现一个个block,在Xception模型中,常见的两个block的结构如下。这个主要在Entry flow和Exit flow中:
这个主要在Middle flow中:
#-------------------------------------------------------------# # Xception的网络部分 #-------------------------------------------------------------# from keras.preprocessing import image from keras.models import Model from keras import layers from keras.layers import Dense,Input,BatchNormalization,Activation,Conv2D,SeparableConv2D,MaxPooling2D from keras.layers import GlobalAveragePooling2D,GlobalMaxPooling2D from keras import backend as K from keras.applications.imagenet_utils import decode_predictions def Xception(input_shape = [299,299,3],classes=1000): img_input = Input(shape=input_shape) #--------------------------# # Entry flow #--------------------------# #--------------------# # block1 #--------------------# # 299,299,3 -> 149,149,64 x = Conv2D(32, (3, 3), strides=(2, 2), use_bias=False, name='block1_conv1')(img_input) x = BatchNormalization(name='block1_conv1_bn')(x) x = Activation('relu', name='block1_conv1_act')(x) x = Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x) x = BatchNormalization(name='block1_conv2_bn')(x) x = Activation('relu', name='block1_conv2_act')(x) #--------------------# # block2 #--------------------# # 149,149,64 -> 75,75,128 residual = Conv2D(128, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv1')(x) x = BatchNormalization(name='block2_sepconv1_bn')(x) x = Activation('relu', name='block2_sepconv2_act')(x) x = SeparableConv2D(128, (3, 3), padding='same', use_bias=False, name='block2_sepconv2')(x) x = BatchNormalization(name='block2_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block2_pool')(x) x = layers.add([x, residual]) #--------------------# # block3 #--------------------# # 75,75,128 -> 38,38,256 residual = Conv2D(256, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block3_sepconv1_act')(x) x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv1')(x) x = BatchNormalization(name='block3_sepconv1_bn')(x) x = Activation('relu', name='block3_sepconv2_act')(x) x = SeparableConv2D(256, (3, 3), padding='same', use_bias=False, name='block3_sepconv2')(x) x = BatchNormalization(name='block3_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block3_pool')(x) x = layers.add([x, residual]) #--------------------# # block4 #--------------------# # 38,38,256 -> 19,19,728 residual = Conv2D(728, (1, 1), strides=(2, 2),padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block4_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv1')(x) x = BatchNormalization(name='block4_sepconv1_bn')(x) x = Activation('relu', name='block4_sepconv2_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block4_sepconv2')(x) x = BatchNormalization(name='block4_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block4_pool')(x) x = layers.add([x, residual]) #--------------------------# # Middle flow #--------------------------# #--------------------# # block5--block12 #--------------------# # 19,19,728 -> 19,19,728 for i in range(8): residual = x prefix = 'block' + str(i + 5) x = Activation('relu', name=prefix + '_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv1')(x) x = BatchNormalization(name=prefix + '_sepconv1_bn')(x) x = Activation('relu', name=prefix + '_sepconv2_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv2')(x) x = BatchNormalization(name=prefix + '_sepconv2_bn')(x) x = Activation('relu', name=prefix + '_sepconv3_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name=prefix + '_sepconv3')(x) x = BatchNormalization(name=prefix + '_sepconv3_bn')(x) x = layers.add([x, residual]) #--------------------------# # Exit flow #--------------------------# #--------------------# # block13 #--------------------# # 19,19,728 -> 10,10,1024 residual = Conv2D(1024, (1, 1), strides=(2, 2), padding='same', use_bias=False)(x) residual = BatchNormalization()(residual) x = Activation('relu', name='block13_sepconv1_act')(x) x = SeparableConv2D(728, (3, 3), padding='same', use_bias=False, name='block13_sepconv1')(x) x = BatchNormalization(name='block13_sepconv1_bn')(x) x = Activation('relu', name='block13_sepconv2_act')(x) x = SeparableConv2D(1024, (3, 3), padding='same', use_bias=False, name='block13_sepconv2')(x) x = BatchNormalization(name='block13_sepconv2_bn')(x) x = MaxPooling2D((3, 3), strides=(2, 2), padding='same', name='block13_pool')(x) x = layers.add([x, residual]) #--------------------# # block14 #--------------------# # 10,10,1024 -> 10,10,2048 x = SeparableConv2D(1536, (3, 3), padding='same', use_bias=False, name='block14_sepconv1')(x) x = BatchNormalization(name='block14_sepconv1_bn')(x) x = Activation('relu', name='block14_sepconv1_act')(x) x = SeparableConv2D(2048, (3, 3), padding='same', use_bias=False, name='block14_sepconv2')(x) x = BatchNormalization(name='block14_sepconv2_bn')(x) x = Activation('relu', name='block14_sepconv2_act')(x) x = GlobalAveragePooling2D(name='avg_pool')(x) x = Dense(classes, activation='softmax', name='predictions')(x) inputs = img_input model = Model(inputs, x, name='xception') model.load_weights("xception_weights_tf_dim_ordering_tf_kernels.h5") return model
建立网络后,可以用以下的代码进行预测。
def preprocess_input(x): x /= 255. x -= 0.5 x *= 2. return x if __name__ == '__main__': model = Xception() img_path = 'elephant.jpg' img = image.load_img(img_path, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) print('Input image shape:', x.shape) preds = model.predict(x) print(np.argmax(preds)) print('Predicted:', decode_predictions(preds))
预测所需的已经训练好的Xception模型可以在https://github.com/fchollet/deep-learning-models/releases下载。非常方便。
预测结果为:
Predicted: [[('n02504458', 'African_elephant', 0.47570863), ('n01871265', 'tusker', 0.3173351), ('n02504013', 'Indian_elephant', 0.030323735), ('n02963159', 'cardigan', 0.0007877756), ('n02410509', 'bison', 0.00075616257)]]