时间:2023-03-13 12:13:05 | 栏目:Redis | 点击:次
众所周知,Redis是一个高性能的数据存储框架,在高并发的系统设计中,Redis也是一个比较关键的组件,是我们提升系统性能的一大利器。深入去理解Redis高性能的原理显得越发重要,当然Redis的高性能设计是一个系统性的工程,涉及到很多内容,本文重点关注Redis的IO模型,以及基于IO模型的线程模型。
我们从IO的起源开始,讲述了阻塞IO、非阻塞IO、多路复用IO。基于多路复用IO,我们也梳理了几种不同的Reactor模型,并分析了几种Reactor模型的优缺点。基于Reactor模型我们开始了Redis的IO模型和线程模型的分析,并总结出Redis线程模型的优点、缺点,以及后续的Redis多线程模型方案。本文的重点是对Redis线程模型设计思想的梳理,捋顺了设计思想,就是一通百通的事了。
注:本文的代码都是伪代码,主要是为了示意,不可用于生产环境。
我们常说的网络IO模型,主要包含阻塞IO、非阻塞IO、多路复用IO、信号驱动IO、异步IO,本文重点关注跟Redis相关的内容,所以我们重点分析阻塞IO、非阻塞IO、多路复用IO,帮助大家后续更好的理解Redis网络模型。
我们先看下面这张图;
我们经常说的阻塞IO其实分为两种,一种是单线程阻塞,一种是多线程阻塞。这里面其实有两个概念,阻塞和线程。
像建立连接、读、写都涉及到系统调用,本身是一个阻塞的操作。
2.1.1 单线程阻塞
服务端单线程来处理,当客户端请求来临时,服务端用主线程来处理连接、读取、写入等操作。
以下用代码模拟了单线程的阻塞模式;
import java.net.Socket; public class BioTest { public static void main(String[] args) throws IOException { ServerSocket server=new ServerSocket(8081); while(true) { Socket socket=server.accept(); System.out.println("accept port:"+socket.getPort()); BufferedReader in=new BufferedReader(new InputStreamReader(socket.getInputStream())); String inData=null; try { while ((inData = in.readLine()) != null) { System.out.println("client port:"+socket.getPort()); System.out.println("input data:"+inData); if("close".equals(inData)) { socket.close(); } } } catch (IOException e) { e.printStackTrace(); } finally { try { socket.close(); } catch (IOException e) { e.printStackTrace(); } } } } }
我们准备用两个客户端同时发起连接请求、来模拟单线程阻塞模式的现象。同时发起连接,通过服务端日志,我们发现此时服务端只接受了其中一个连接,主线程被阻塞在上一个连接的read方法上。
我们尝试关闭第一个连接,看第二个连接的情况,我们希望看到的现象是,主线程返回,新的客户端连接被接受。
从日志中发现,在第一个连接被关闭后,第二个连接的请求被处理了,也就是说第二个连接请求在排队,直到主线程被唤醒,才能接收下一个请求,符合我们的预期。
此时不仅要问,为什么呢?
主要原因在于accept、read、write三个函数都是阻塞的,主线程在系统调用的时候,线程是被阻塞的,其他客户端的连接无法被响应。
通过以上流程,我们很容易发现这个过程的缺陷,服务器每次只能处理一个连接请求,CPU没有得到充分利用,性能比较低。如何充分利用CPU的多核特性呢?自然而然的想到了——多线程逻辑。
2.1.2 多线程阻塞
对工程师而言,代码解释一切,直接上代码。
BIO多线程
package net.io.bio; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.ServerSocket; import java.net.Socket; public class BioTest { public static void main(String[] args) throws IOException { final ServerSocket server=new ServerSocket(8081); while(true) { new Thread(new Runnable() { public void run() { Socket socket=null; try { socket = server.accept(); System.out.println("accept port:"+socket.getPort()); BufferedReader in=new BufferedReader(new InputStreamReader(socket.getInputStream())); String inData=null; while ((inData = in.readLine()) != null) { System.out.println("client port:"+socket.getPort()); System.out.println("input data:"+inData); if("close".equals(inData)) { socket.close(); } } } catch (IOException e) { e.printStackTrace(); } finally { } } }).start(); } } }
同样,我们并行发起两个请求;
两个请求,都被接受,服务端新增两个线程来处理客户端的连接和后续请求。
我们用多线程解决了,服务器同时只能处理一个请求的问题,但同时又带来了一个问题,如果客户端连接比较多时,服务端会创建大量的线程来处理请求,但线程本身是比较耗资源的,创建、上下文切换都比较耗资源,又如何去解决呢?
如果我们把所有的Socket(文件句柄,后续用Socket来代替fd的概念,尽量减少概念,减轻阅读负担)都放到队列里,只用一个线程来轮训所有的Socket的状态,如果准备好了就把它拿出来,是不是就减少了服务端的线程数呢?
一起看下代码,单纯非阻塞模式,我们基本上不用,为了演示逻辑,我们模拟了相关代码如下;
package net.io.bio; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.net.ServerSocket; import java.net.Socket; import java.net.SocketTimeoutException; import java.util.ArrayList; import java.util.List; import org.apache.commons.collections4.CollectionUtils; public class NioTest { public static void main(String[] args) throws IOException { final ServerSocket server=new ServerSocket(8082); server.setSoTimeout(1000); List<Socket> sockets=new ArrayList<Socket>(); while (true) { Socket socket = null; try { socket = server.accept(); socket.setSoTimeout(500); sockets.add(socket); System.out.println("accept client port:"+socket.getPort()); } catch (SocketTimeoutException e) { System.out.println("accept timeout"); } //模拟非阻塞:轮询已连接的socket,每个socket等待10MS,有数据就处理,无数据就返回,继续轮询 if(CollectionUtils.isNotEmpty(sockets)) { for(Socket socketTemp:sockets ) { try { BufferedReader in=new BufferedReader(new InputStreamReader(socketTemp.getInputStream())); String inData=null; while ((inData = in.readLine()) != null) { System.out.println("input data client port:"+socketTemp.getPort()); System.out.println("input data client port:"+socketTemp.getPort() +"data:"+inData); if("close".equals(inData)) { socketTemp.close(); } } } catch (SocketTimeoutException e) { System.out.println("input client loop"+socketTemp.getPort()); } } } } } }
系统初始化,等待连接;
发起两个客户端连接,线程开始轮询两个连接中是否有数据。
两个连接分别输入数据后,轮询线程发现有数据准备好了,开始相关的逻辑处理(单线程、多线程都可)。
再用一张流程图辅助解释下(系统实际采用文件句柄,此时用Socket来代替,方便大家理解)。
服务端专门有一个线程来负责轮询所有的Socket,来确认操作系统是否完成了相关事件,如果有则返回处理,如果无继续轮询,大家一起来思考下?此时又带来了什么问题呢。
CPU的空转、系统调用(每次轮询到涉及到一次系统调用,通过内核命令来确认数据是否准备好),造成资源的浪费,那有没有一种机制,来解决这个问题呢?
server端有没专门的线程来做轮询操作(应用程序端非内核),而是由事件来触发,当有相关读、写、连接事件到来时,主动唤起服务端线程来进行相关逻辑处理。模拟了相关代码如下;
IO多路复用
import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.SelectionKey; import java.nio.channels.Selector; import java.nio.channels.ServerSocketChannel; import java.nio.channels.SocketChannel; import java.nio.charset.Charset; import java.util.Iterator; import java.util.Set; public class NioServer { private static Charset charset = Charset.forName("UTF-8"); public static void main(String[] args) { try { Selector selector = Selector.open(); ServerSocketChannel chanel = ServerSocketChannel.open(); chanel.bind(new InetSocketAddress(8083)); chanel.configureBlocking(false); chanel.register(selector, SelectionKey.OP_ACCEPT); while (true){ int select = selector.select(); if(select == 0){ System.out.println("select loop"); continue; } System.out.println("os data ok"); Set<SelectionKey> selectionKeys = selector.selectedKeys(); Iterator<SelectionKey> iterator = selectionKeys.iterator(); while (iterator.hasNext()){ SelectionKey selectionKey = iterator.next(); if(selectionKey.isAcceptable()){ ServerSocketChannel server = (ServerSocketChannel)selectionKey.channel(); SocketChannel client = server.accept(); client.configureBlocking(false); client.register(selector, SelectionKey.OP_READ); //继续可以接收连接事件 selectionKey.interestOps(SelectionKey.OP_ACCEPT); }else if(selectionKey.isReadable()){ //得到SocketChannel SocketChannel client = (SocketChannel)selectionKey.channel(); //定义缓冲区 ByteBuffer buffer = ByteBuffer.allocate(1024); StringBuilder content = new StringBuilder(); while (client.read(buffer) > 0){ buffer.flip(); content.append(charset.decode(buffer)); } System.out.println("client port:"+client.getRemoteAddress().toString()+",input data: "+content.toString()); //清空缓冲区 buffer.clear(); } iterator.remove(); } } } catch (Exception e) { e.printStackTrace(); } } }
同时创建两个连接;
两个连接无阻塞的被创建;
无阻塞的接收读写;
再用一张流程图辅助解释下(系统实际采用文件句柄,此时用Socket来代替,方便大家理解)。
当然操作系统的多路复用有好几种实现方式,我们经常使用的select(),epoll模式这里不做过多的解释,有兴趣的可以查看相关文档,IO的发展后面还有异步、事件等模式,我们在这里不过多的赘述,我们更多的是为了解释Redis线程模式的发展。
我们一起来聊了阻塞、非阻塞、IO多路复用模式,那Redis采用的是哪种呢?
Redis采用的是IO多路复用模式,所以我们重点来了解下多路复用这种模式,如何在更好的落地到我们系统中,不可避免的我们要聊下Reactor模式。
首先我们做下相关的名词解释;
Reactor:类似NIO编程中的Selector,负责I/O事件的派发;
Acceptor:NIO中接收到事件后,处理连接的那个分支逻辑;
Handler:消息读写处理等操作类。
处理流程
优点
缺点
怎么去解决上述问题呢?既然业务处理逻辑可能会影响系统瓶颈,那我们是不是可以把业务处理逻辑单拎出来,交给线程池来处理,一方面减小对主线程的影响,另一方面利用CPU多核的优势。这一点希望大家要理解透彻,方便我们后续理解Redis由单线程模型到多线程模型的设计的思路。
这种模型相对单Reactor单线程模型,只是将业务逻辑的处理逻辑交给了一个线程池来处理。
处理流程
优点
缺点
有没有什么好的办法来解决上述问题呢?通过以上的分析,大家有没有发现一个现象,当某一个点成为系统瓶颈点时,想办法把他拿出来,交个其他线程来处理,那这种场景是否适用呢?
这种模型相对单Reactor多线程模型,只是将Scoket的读写处理从mainReactor中拎出来,交给subReactor线程来处理。
处理流程
Handler完成读事件后,包装成一个任务对象,交给线程池来处理,把业务处理逻辑交给其他线程来处理。
优点
缺点
以上我们聊了,IO网路模型的发展历史,也聊了IO多路复用的reactor模式。那Redis采用的是哪种reactor模式呢?在回答这个问题前,我们先梳理几个概念性的问题。
Redis服务器中有两类事件,文件事件和时间事件。
本文重点聊下Socket相关的事件。
首先我们来看下Redis服务的线程模型图;
IO多路复用负责各事件的监听(连接、读、写等),当有事件发生时,将对应事件放入队列中,由事件分发器根据事件类型来进行分发;
如果是连接事件,则分发至连接应答处理器;GET、SET等redis命令分发至命令请求处理器。
命令处理完后产生命令回复事件,再由事件队列,到事件分发器,到命令回复处理器,回复客户端响应。
4.3.1 连接流程
连接过程
4.3.2 命令执行流程
SET命令执行过程
以上流程分析我们可以看出Redis采用的是单线程Reactor模型,我们也分析了这种模式的优缺点,那Redis为什么还要采用这种模式呢?
Redis本身的特性
命令执行基于内存操作,业务处理逻辑比较快,所以命令处理这一块单线程来做也能维持一个很高的性能。
优点
缺点
Redis又是如何去解的呢?
哈哈~将耗时的点从主线程拎出来呗?那Redis的新版本是这么做的吗?我们一起来看下。
Redis的多线程模型跟”多Reactor多线程模型“、“单Reactor多线程模型有点区别”,但同时用了两种Reactor模型的思想,具体如下;
命令执行大致流程
了解一个组件,更多的是要去了解他的设计思路,要去思考为什么要这么设计,做这种技术选型的背景是啥,对后续做系统架构设计有什么参考意义等等。一通百通,希望对大家有参考意义。