当前位置:主页 > 软件编程 > Python代码 >

python muggle_ocr库用法及实例代码

时间:2023-03-11 11:00:19 | 栏目:Python代码 | 点击:

说明

1、muggle_ocr是一款轻量级的ocr识别库,对于python来说是识别率较高的图片验证码模块。

2、主要用于识别各种类型的验证码,一般文字提取效果稍差。

安装命令

pip install muggle_ocr

实例

import muggle_ocr
# 初始化sdk;model_type 包含了 ModelType.OCR/ModelType.Captcha 两种模式,分别对应常规图片与验证码
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha)
 
with open(r"d:\Desktop\四位验证码.png", "rb") as f:
    img = f.read()
 
text = sdk.predict(image_bytes=img)
print(text)

相关实例扩展:

import time

# 1. 导入包
import muggle_ocr

"""
使用预置模型,预置模型包含了[ModelType.OCR, ModelType.Captcha] 两种
其中 ModelType.OCR 用于识别普通印刷文本, ModelType.Captcha 用于识别4-6位简单英数验证码

"""

# 打开印刷文本图片
with open(r"test1.png", "rb") as f:
    ocr_bytes = f.read()

# 打开验证码图片
with open(r"test2.jpg", "rb") as f:
    captcha_bytes = f.read()

# 2. 初始化;model_type 可选: [ModelType.OCR, ModelType.Captcha]
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.OCR)

# ModelType.Captcha 可识别光学印刷文本
for i in range(5):
    st = time.time()
    # 3. 调用预测函数
    text = sdk.predict(image_bytes=ocr_bytes)
    print(text, time.time() - st)

# ModelType.Captcha 可识别4-6位验证码
sdk = muggle_ocr.SDK(model_type=muggle_ocr.ModelType.Captcha)
for i in range(5):
    st = time.time()
    # 3. 调用预测函数
    text = sdk.predict(image_bytes=captcha_bytes)
    print(text, time.time() - st)

"""
使用自定义模型
支持基于 https://github.com/kerlomz/captcha_trainer 框架训练的模型
训练完成后,进入导出编译模型的[out]路径下, 把[graph]路径下的pb模型和[model]下的yaml配置文件放到同一路径下。
将 conf_path 参数指定为 yaml配置文件 的绝对或项目相对路径即可,其他步骤一致,如下示例:
"""
with open(r"test3.jpg", "rb") as f:
    b = f.read()
sdk = muggle_ocr.SDK(conf_path="./ocr.yaml")
text = sdk.predict(image_bytes=b)

您可能感兴趣的文章:

相关文章