时间:2023-03-04 10:51:14 | 栏目:Python代码 | 点击:次
对图像进行缩放的最简单方法当然是调用resize函数啦!
resize函数可以将源图像精确地转化为指定尺寸的目标图像。
要缩小图像,一般推荐使用CV_INETR_AREA来插值;若要放大图像,推荐使用CV_INTER_LINEAR。
#include<opencv2\opencv.hpp> #include<opencv2\highgui\highgui.hpp> using namespace std; using namespace cv; //图片的缩小与放大 int main() { Mat img = imread("lol5.jpg"); imshow("原始图", img); Mat dst = Mat::zeros(512, 512, CV_8UC3); //我要转化为512*512大小的 resize(img, dst, dst.size()); imshow("尺寸调整之后", dst); waitKey(0); }
#include<opencv2\opencv.hpp> #include<opencv2\highgui\highgui.hpp> using namespace std; using namespace cv; //图片的缩小与放大 int main() { Mat img = imread("lol5.jpg"); imshow("原始图", img); Mat dst; resize(img, dst, Size(),0.5,0.5);//我长宽都变为原来的0.5倍 imshow("尺寸调整之后", dst); waitKey(0); }
说白了,图像金字塔就是用来进行图像缩放的,干的事情跟resize函数没两样,那我们还需要学它吗?我觉得有必要的额,因为在学习卷积神经网络中会遇到这个名词,所以都学一学吧,搞图形都绕不过他!
说说什么是图像金字塔。
其实非常好理解,如上图所示,我们将一层层的图像比喻为金字塔,层级越高,则图像尺寸越小,分辨率越低。
图像金字塔有两个高频出现的名词:上采样和下采样。现在说说他们俩。
下采样将步骤:
对图像进行高斯内核卷积
将所有偶数行和列去除
下采样就是图像压缩,会丢失图像信息。
上采样步骤:
上、下采样都存在一个严重的问题,那就是图像变模糊了,因为缩放的过程中发生了信息丢失的问题。要解决这个问题,就得看拉普拉斯金字塔了。
下面给出OpenCV中pryUp和pryDown的用法。
#include<opencv2\opencv.hpp> #include<opencv2\highgui\highgui.hpp> using namespace std; using namespace cv; //图像金字塔 int main() { Mat img = imread("lol8.jpg"); imshow("原始图", img); Mat dst,dst2; pyrUp(img, dst, Size(img.cols*2, img.rows*2)); //放大一倍 pyrDown(img, dst2, Size(img.cols * 0.5, img.rows * 0.5)); //缩小为原来的一半 imshow("尺寸放大之后", dst); imshow("尺寸缩小之后", dst2); waitKey(0); }
显然,无论是放大还是缩小,图像都变得模糊了,这就是他的致命缺点。
个人认为,要做缩放就用resize函数吧,毕竟方便太多而且图像不会变模糊!