当前位置:主页 > 软件编程 > Python代码 >

Python实现归一化算法详情

时间:2023-02-19 10:53:17 | 栏目:Python代码 | 点击:

1.前言                                 

归一化算法Normalization将数据处理成量纲一直的数据,一般限定在[0,1]、[-1,1]
一般在进行建模的时候需要进行数据归一化处理,

原因如下:

下面介绍三种常见的标准化方法,分别是最大最小值、正态中心化、小数点定标

2.Min-Max方法

2.1 公式

2.2 算法实现逻辑

2.3 代码

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 1.最小最大标准化
Data = np.array([[0.2,0.9,29],
                [0.9,0.1,100],
                [0.5,0.5,30]]) #最小-最大归一化算法
# 1.1数据转化
def MinMax(data):
    min = 0
    max = 1
    C = data[:,2]
    min = np.min(C)
    max = np.max(C)
    for one in data:
        one[2] = (one[2]-min) / (max-min)
    print('转化后的矩阵:\n',data)
    return data


# 1.2可视化
def ShowData(Data,ShowD1):
    length = len(Data)
    X = np.ones(Data.shape[0])
    plt.figure(1)
    plt.subplot(121)
    for i in range(length):
        plt.scatter(X*(i+1),Data[:,i])
    plt.subplot(122)
    for i in range(length):
        plt.scatter(X*(i+1),ShowD1[:,i])
    plt.show()
ShowData(Data,MinMax(Data.copy()))

转化后的矩阵:

 [[0.2        0.9        0.        ]
 [0.9        0.1        1.        ]
 [0.5        0.5        0.01408451]]

2.4局限

3 Z-score标准化

3.1 公式

3.2 算法实现逻辑

3.3 代码

def Zscore(data):
    x_mean = np.mean(data[:2])
    length = len(data[:,2])
    vari = np.sqrt((np.sum((data[:2]-x_mean)**2))/length)
    print('方差:',vari)
    data[:,2] = (data[:,2]-x_mean)/vari
    print('Z-score标准化后的矩阵是',data)
    return data

ShowData(Data,Zscore(Data.copy()))

方差: 51.569160680908254
Z-score标准化后的矩阵是 [[0.2        0.9        0.13864876]
 [0.9        0.1        1.5154406 ]
 [0.5        0.5        0.15804019]]

3.4 局限

4 小数定标法

4.1 公式

4.2 算法实现逻辑

4.3 代码实现

# 小数定标归一化算法
def Decimals(data):
    C = np.abs(data[:,2])
    max = int(np.sort(C)[-1]) # 按从小到大排序,取最后一位,及最大值
    k = len(str(max))
    print('绝对值最大的位数:\n',k)
    data[:2] = data[:,2] /(10**k)
    print('小数点定标准化后的矩阵:\n',data)
    return data
ShowData(Data,Decimals(Data.copy()))

绝对值最大的位数:

 3

小数点定标准化后的矩阵:

 [[2.9e-02 1.0e-01 3.0e-02]
 [2.9e-02 1.0e-01 3.0e-02]
 [5.0e-01 5.0e-01 3.0e+01]]

4.4 局限

您可能感兴趣的文章:

相关文章