时间:2023-02-01 10:28:26 | 栏目:C代码 | 点击:次
红黑树的应用:
1、利用key_value对,快速查找,O(logn)
2、利用红黑树中序遍历是顺序的特性
3、nginx定时器
为什么使用红黑树不使用哈希表?
二叉排序树(bstree)
红黑树性质
如何证明红黑树的正确性?
左旋与右旋
红黑树的插入:
插入有三种情况:
平衡二叉树:
红黑树的删除:
删除y节点,是什么颜色的时候需要调整?
#include <stdio.h> #include <stdlib.h> #include <string.h> #define RED 1 #define BLACK 2 typedef int KEY_TYPE; typedef struct _rbtree_node { unsigned char color; struct _rbtree_node *right; struct _rbtree_node *left; struct _rbtree_node *parent; KEY_TYPE key; void *value; } rbtree_node; typedef struct _rbtree { rbtree_node *root; rbtree_node *nil; } rbtree; rbtree_node *rbtree_mini(rbtree *T, rbtree_node *x) { while (x->left != T->nil) { x = x->left; } return x; } rbtree_node *rbtree_maxi(rbtree *T, rbtree_node *x) { while (x->right != T->nil) { x = x->right; } return x; } rbtree_node *rbtree_successor(rbtree *T, rbtree_node *x) { rbtree_node *y = x->parent; if (x->right != T->nil) { return rbtree_mini(T, x->right); } while ((y != T->nil) && (x == y->right)) { x = y; y = y->parent; } return y; } void rbtree_left_rotate(rbtree *T, rbtree_node *x) { rbtree_node *y = x->right; // x --> y , y --> x, right --> left, left --> right x->right = y->left; //1 1 if (y->left != T->nil) { //1 2 y->left->parent = x; } y->parent = x->parent; //1 3 if (x->parent == T->nil) { //1 4 T->root = y; } else if (x == x->parent->left) { x->parent->left = y; } else { x->parent->right = y; } y->left = x; //1 5 x->parent = y; //1 6 } void rbtree_right_rotate(rbtree *T, rbtree_node *y) { rbtree_node *x = y->left; y->left = x->right; if (x->right != T->nil) { x->right->parent = y; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->right) { y->parent->right = x; } else { y->parent->left = x; } x->right = y; y->parent = x; } void rbtree_insert_fixup(rbtree *T, rbtree_node *z) { while (z->parent->color == RED) { //z ---> RED if (z->parent == z->parent->parent->left) { rbtree_node *y = z->parent->parent->right; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; //z --> RED } else { if (z == z->parent->right) { z = z->parent; rbtree_left_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_right_rotate(T, z->parent->parent); } }else { rbtree_node *y = z->parent->parent->left; if (y->color == RED) { z->parent->color = BLACK; y->color = BLACK; z->parent->parent->color = RED; z = z->parent->parent; //z --> RED } else { if (z == z->parent->left) { z = z->parent; rbtree_right_rotate(T, z); } z->parent->color = BLACK; z->parent->parent->color = RED; rbtree_left_rotate(T, z->parent->parent); } } } T->root->color = BLACK; } void rbtree_insert(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->root; while (x != T->nil) { y = x; if (z->key < x->key) { x = x->left; } else if (z->key > x->key) { x = x->right; } else { //Exist return ; } } z->parent = y; if (y == T->nil) { T->root = z; } else if (z->key < y->key) { y->left = z; } else { y->right = z; } z->left = T->nil; z->right = T->nil; z->color = RED; rbtree_insert_fixup(T, z); } void rbtree_delete_fixup(rbtree *T, rbtree_node *x) { while ((x != T->root) && (x->color == BLACK)) { if (x == x->parent->left) { rbtree_node *w= x->parent->right; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_left_rotate(T, x->parent); w = x->parent->right; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->right->color == BLACK) { w->left->color = BLACK; w->color = RED; rbtree_right_rotate(T, w); w = x->parent->right; } w->color = x->parent->color; x->parent->color = BLACK; w->right->color = BLACK; rbtree_left_rotate(T, x->parent); x = T->root; } } else { rbtree_node *w = x->parent->left; if (w->color == RED) { w->color = BLACK; x->parent->color = RED; rbtree_right_rotate(T, x->parent); w = x->parent->left; } if ((w->left->color == BLACK) && (w->right->color == BLACK)) { w->color = RED; x = x->parent; } else { if (w->left->color == BLACK) { w->right->color = BLACK; w->color = RED; rbtree_left_rotate(T, w); w = x->parent->left; } w->color = x->parent->color; x->parent->color = BLACK; w->left->color = BLACK; rbtree_right_rotate(T, x->parent); x = T->root; } } } x->color = BLACK; } rbtree_node *rbtree_delete(rbtree *T, rbtree_node *z) { rbtree_node *y = T->nil; rbtree_node *x = T->nil; if ((z->left == T->nil) || (z->right == T->nil)) { y = z; } else { y = rbtree_successor(T, z); } if (y->left != T->nil) { x = y->left; } else if (y->right != T->nil) { x = y->right; } x->parent = y->parent; if (y->parent == T->nil) { T->root = x; } else if (y == y->parent->left) { y->parent->left = x; } else { y->parent->right = x; } if (y != z) { z->key = y->key; z->value = y->value; } if (y->color == BLACK) { rbtree_delete_fixup(T, x); } return y; } rbtree_node *rbtree_search(rbtree *T, KEY_TYPE key) { rbtree_node *node = T->root; while (node != T->nil) { if (key < node->key) { node = node->left; } else if (key > node->key) { node = node->right; } else { return node; } } return T->nil; } void rbtree_traversal(rbtree *T, rbtree_node *node) { if (node != T->nil) { rbtree_traversal(T, node->left); printf("key:%d, color:%d\n", node->key, node->color); rbtree_traversal(T, node->right); } } int main() { int keyArray[20] = {24,25,13,35,23, 26,67,47,38,98, 20,19,17,49,12, 21,9,18,14,15}; rbtree *T = (rbtree *)malloc(sizeof(rbtree)); if (T == NULL) { printf("malloc failed\n"); return -1; } T->nil = (rbtree_node*)malloc(sizeof(rbtree_node)); T->nil->color = BLACK; T->root = T->nil; rbtree_node *node = T->nil; int i = 0; for (i = 0;i < 20;i ++) { node = (rbtree_node*)malloc(sizeof(rbtree_node)); node->key = keyArray[i]; node->value = NULL; rbtree_insert(T, node); } rbtree_traversal(T, T->root); printf("----------------------------------------\n"); for (i = 0;i < 20;i ++) { rbtree_node *node = rbtree_search(T, keyArray[i]); rbtree_node *cur = rbtree_delete(T, node); free(cur); rbtree_traversal(T, T->root); printf("----------------------------------------\n"); } }
总结