时间:2022-12-13 09:30:29 | 栏目:Python代码 | 点击:次
数字滤波分为 IIR 滤波,和FIR 滤波。
FIR 滤波:
import scipy.signal as signal import numpy as np import pylab as pl import matplotlib.pyplot as plt import matplotlib from scipy import signal b = signal.firwin(80, 0.5, window=('kaiser', 8)) w, h = signal.freqz(b) import matplotlib.pyplot as plt fig, ax1 = plt.subplots() ax1.set_title('Digital filter frequency response') ax1.plot(w, 20 * np.log10(abs(h)), 'b') ax1.set_ylabel('Amplitude [dB]', color='b') ax1.set_xlabel('Frequency [rad/sample]') ax2 = ax1.twinx() angles = np.unwrap(np.angle(h)) ax2.plot(w, angles, 'g') ax2.set_ylabel('Angle (radians)', color='g') ax2.grid() ax2.axis('tight') plt.show()
运行结果:
IIR 滤波器:
from scipy import signal import matplotlib.pyplot as plt import matplotlib.ticker import numpy as np # 蓝色的是频谱图,绿色的是相位图 wp = 0.2 ws = 0.3 gpass = 1 gstop = 40 system = signal.iirdesign(wp, ws, gpass, gstop) w, h = signal.freqz(*system) fig, ax1 = plt.subplots() ax1.set_title('Digital filter frequency response') ax1.plot(w, 20 * np.log10(abs(h)), 'b') ax1.set_ylabel('Amplitude [dB]', color='b') ax1.set_xlabel('Frequency [rad/sample]') ax1.grid() ax1.set_ylim([-110, 10]) nticks = 8 ax1.yaxis.set_major_locator(matplotlib.ticker.LinearLocator(nticks)) plt.show()
运行结果:
IIR 滤波器中cheyb2 滤波器的运用
from scipy import signal import matplotlib.pyplot as plt import numpy as np b, a = signal.cheby2(4, 40, 100, 'low', analog=True) w, h = signal.freqs(b, a) plt.semilogx(w, 20 * np.log10(abs(h)))#用于绘制折线图,两个函数的 x 轴、y 轴分别是指数型的。 #plt.plot(w, 20 * np.log10(abs(h))) plt.title('Chebyshev Type II frequency response (rs=40)') plt.xlabel('Frequency [radians / second]') plt.ylabel('Amplitude [dB]') plt.margins(0, 0.1)# not sure plt.grid(which='both', axis='both') t = np.linspace(0, 1, 1000, False) # 1 second sig = np.sin(2*np.pi*10*t) + np.sin(2*np.pi*20*t) fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.plot(t, sig) ax1.set_title('10 Hz and 20 Hz sinusoids') ax1.axis([0, 1, -2, 2]) sos = signal.cheby2(12, 20, 17, 'hp', fs=1000, output='sos') filtered = signal.sosfilt(sos, sig) ax2.plot(t, filtered) ax2.set_title('After 17 Hz high-pass filter') ax2.axis([0, 1, -2, 2]) ax2.set_xlabel('Time [seconds]') plt.show()