当前位置:主页 > 软件编程 > Python代码 >

总结的几个Python函数方法设计原则

时间:2022-12-08 12:53:59 | 栏目:Python代码 | 点击:

在任何编程语言中,函数的应用主要出于以下两种情况:

1.代码块重复,这时候必须考虑用到函数,降低程序的冗余度
2.代码块复杂,这时候可以考虑用到函数,增强程序的可读性

当流程足够繁杂时,就要考虑函数,及如何将函数组合在一起。在Python中做函数设计,主要考虑到函数大小、聚合性、耦合性三个方面,这三者应该归结于规划与设计的范畴。高内聚、低耦合则是任何语言函数设计的总体原则。

1.如何将任务分解成更有针对性的函数从而导致了聚合性
2.如何设计函数间的通信则又涉及到耦合性
3.如何设计函数的大小用以加强其聚合性及降低其耦合性

【聚合】

每个函数只做一件事

完美的程序设计,每个函数应该而且只需做一件事。
比如说:把大象放进冰箱分三步:把门打开、把大象放进去、把门关上。
这样就应该写三个函数而不是一个函数拿所有的事全做了。这样结构清晰,层次分明,也好理解!

【大小】

保持简单、保持简短

Python即是面向过程的语言,也是面向对象的语言,但更多的是充当脚本语言的角色。
同样的功能,使用Python来实现其代码长度也许是C/C++/Java等语言的1/3. 几百行代码就能实现不小的功能!
如果项目中设计的一个函数需要翻页才能看完的话,就要考虑将函数拆分了。
在Python自带的200多个模块中,很少看到某个函数有两、三页的。
Python代码以简单明了著称,一个过长或者有着深层嵌套的函数往往成为设计缺陷的征兆。

【耦合】

输入使用参数、输出使用return语句

这样做可以让函数独立于它外部的东西。参数和return语句就是隔离外部依赖的最好的办法。

慎用全局变量

第一重考虑: 全局变量通常是一种蹩脚的函数间的进行通信的方式。
它会引发依赖关系和计时的问题,从而会导致程序调试和修改的困难。

第二重考虑: 从代码及性能优化来考虑,本地变量远比全局变量快。
根据Python对变量的搜索的先后顺序: 本地函数变量==》上层函数变量==》全局变量==》内置变量
从上面可以看出,本地变量优先被搜索,一旦找到,就此停下。下面专门对其做了测试,测试结果如下:

import profile 
 
A = 5 
 
def param_test(): 
  B = 5 
  res = 0 
  for i in range(100000000): 
    res = B + i 
  return res 
     
if __name__=='__main__': 
  profile.run('param_test()') 
>>> ===================================== RESTART ===================================== 
>>>  
     5 function calls in 37.012 seconds #全局变量测试结果:37 秒 
 
 
  Ordered by: standard name 
 
 
  ncalls tottime percall cumtime percall filename:lineno(function) 
    1  19.586  19.586  19.586  19.586 :0(range) 
    1  1.358  1.358  1.358  1.358 :0(setprofile) 
    1  0.004  0.004  35.448  35.448 <string>:1(<module>) 
    1  15.857  15.857  35.443  35.443 Learn.py:5(param_test) 
    1  0.206  0.206  37.012  37.012 profile:0(param_test()) 
    0  0.000       0.000     profile:0(profiler) 
 
 
 
 
>>> ===================================== RESTART ===================================== 
>>>  
     5 function calls in 11.504 seconds  #局部变量测试结果: 11 秒 
 
 
  Ordered by: standard name 
 
 
  ncalls tottime percall cumtime percall filename:lineno(function) 
    1  3.135  3.135  3.135  3.135 :0(range) 
    1  0.006  0.006  0.006  0.006 :0(setprofile) 
    1  0.000  0.000  11.497  11.497 <string>:1(<module>) 
    1  8.362  8.362  11.497  11.497 Learn.py:5(param_test) 
    1  0.000  0.000  11.504  11.504 profile:0(param_test()) 
    0  0.000       0.000     profile:0(profiler) 



避免改变可变类型参数

Python数据类型比如说列表、字典属于可变对象。在作为参数传递给函数时,有时会像全局变量一样被修改。

这样做的坏处是:增强了函数之间的耦合性,从而导致函数过于特殊和不友好。维护起来也困难。

这个时候就要考虑使用切片S[:]和copy模块中的copy()函数和deepcopy()函数来做个拷贝,避免修改可变对象

具体参考这篇文章: Python中的深浅拷贝详解 

避免直接改变另一个模块中的变量

比如说在b.py文件中导入a模块,a中有变量PI = 3.14, 但b.py想将其修改为:PI = 3.14159, 在这里你就搞不清楚变量PI原先的值到底是多少。碰到这种情况,可以考虑用易懂的函数名来实现:

#模块a.py 
PI = 3.14 
 
def setPi(new): 
  PI = new 
  return PI 

这样既有自己想要的PI的值,又没有改变a模块中PI的值

import a 
 
PI = a.setPi(3.14159) 
print PI;a.PI 

您可能感兴趣的文章:

相关文章