当前位置:主页 > 软件编程 > Python代码 >

关于Torch torchvision Python版本对应关系说明

时间:2022-11-22 10:56:30 | 栏目:Python代码 | 点击:

1. torch- torchvision- python版本对应关系

2. CUDA Toolkit 和PyTorch的对应关系

仅供参考

3. 安装说明

3.1 用anaconda安装pytorch

anaconda新建虚拟环境后,直接在pytorch官网官网链接找到“Install”按钮。这里一键搞定torch,torchvision,cudatoolkit等等。

原因是anaconda将torch,torchvision,cudatoolkit等等都集成在虚拟环境里,统一管理依赖包。

如图所示

有镜像源的情况下,去掉末尾的“-c pytorch”会更快,否则经常容易下载超时。conda下载超时时长可以设置。

conda config --show
conda config --set remote_connect_timeout_secs 40
conda config --set remote_read_timeout_secs 100
conda config --show		#查看conda设置
conda config --set 		#设置对应的参数

3.2 不用Anaconda来管理环境

仔细对照torch、torchvision、cuda之间的对应关系,还有NVIDIA和CUDA版本的关系。

3.3 对NVIDIA驱动的要求

和NVIDIA驱动直接关联的是CUDA的版本。

如果安装的是CUDA=10.0.130,那么在Windows系统要求NVIDIA驱动大于411.31,不需要严格等于411.31

如果小于411.31,则会报错显示驱动版本过旧。

笔者是将NVIDIA驱动更新至最大456.38,正常使用。

3.4 下载 .whl 文件离线安装

https://download.pytorch.org/whl/torch_stable.html

根据前面的对应关系,下载好适合你的版本的 torch 、torchvision。

cu102 # 表示CUDA=10.2
cp37 # 表示python=3.7
linux or win 

下载好后,用pip安装,先cd 到下载的文件夹

pip install torch-1.7.0+cu101-cp36-cp36m-win_amd64.whl
pip install torchvision-0.8.0-cp36-cp36m-win_amd64.whl

测试GPU版本的torch是否安装成功

(torch) D:\MyData\xiaCN\Desktop\Work\unbiased> python
Python 3.6.13 (default, Feb 19 2021, 05:17:09) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True

您可能感兴趣的文章:

相关文章