时间:2022-11-14 09:31:49 | 栏目:Python代码 | 点击:次
import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready") n_input = 784 # 28*28的灰度图,像素个数784 n_output = 10 # 是10分类问题 # 权重项 weights = { # conv1,参数[3, 3, 1, 32]分别指定了filter的h、w、所连接输入的维度、filter的个数即产生特征图个数 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.1)), # conv2,这里参数3,3同上,32是当前连接的深度是32,即前面特征图的个数,64为输出的特征图的个数 'wc2': tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.1)), # fc1,将特征图转换为向量,1024由自己定义 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024], stddev=0.1)), # fc2,做10分类任务,前面连1024,输出10分类 'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1)) } """ 特征图大小计算: f_w = (w-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28 # 说明经过卷积层并没有改变图片的大小 f_h = (h-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28 # 特征图的大小是经过池化层后改变的 第一次pooling后28*28变为14*14 第二次pooling后14*14变为7*7,即最终是一个7*7*64的特征图 """ # 偏置项 biases = { 'bc1': tf.Variable(tf.random_normal([32], stddev=0.1)), # conv1,对应32个特征图 'bc2': tf.Variable(tf.random_normal([64], stddev=0.1)), # conv2,对应64个特征图 'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)), # fc1,对应1024个向量 'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1)) # fc2,对应10个输出 } def conv_basic(_input, _w, _b, _keep_prob): # INPUT # 对图像做预处理,转换为tf支持的格式,即[n, h, w, c],-1是确定好其它3维后,让tf去推断剩下的1维 _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) # CONV LAYER 1 _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME') # [1, 1, 1, 1]分别代表batch_size、h、w、c的stride # padding有两种选择:'SAME'(窗口滑动时,像素不够会自动补0)或'VALID'(不够就跳过)两种选择 _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1'])) # 卷积层后连激活函数 # 最大值池化,[1, 2, 2, 1]其中1,1对应batch_size和channel,2,2对应2*2的池化 _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 随机杀死一些神经元,_keepratio为保留神经元比例,如0.6 _pool_dr1 = tf.nn.dropout(_pool1, _keep_prob) # CONV LAYER 2 _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME') _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2'])) _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') _pool_dr2 = tf.nn.dropout(_pool2, _keep_prob) # dropout # VECTORIZE向量化 # 定义全连接层的输入,把pool2的输出做一个reshape,变为向量的形式 _densel = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]]) # FULLY CONNECTED LAYER 1 _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w['wd1']), _b['bd1'])) # w*x+b,再通过relu _fc_dr1 = tf.nn.dropout(_fc1, _keep_prob) # dropout # FULLY CONNECTED LAYER 2 _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2']) # w*x+b,得到结果 # RETURN out = {'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool_dr1': _pool_dr1, 'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'densel': _densel, 'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out } return out print("CNN READY") x = tf.placeholder(tf.float32, [None, n_input]) # 用placeholder先占地方,样本个数不确定为None y = tf.placeholder(tf.float32, [None, n_output]) # 用placeholder先占地方,样本个数不确定为None keep_prob = tf.placeholder(tf.float32) _pred = conv_basic(x, weights, biases, keep_prob)['out'] # 前向传播的预测值 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) # 交叉熵损失函数 optm = tf.train.AdamOptimizer(0.001).minimize(cost) # 梯度下降优化器 _corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) # 对比预测值索引和实际label索引,相同返回True,不同返回False accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) # 将True或False转换为1或0,并对所有的判断结果求均值 init = tf.global_variables_initializer() print("FUNCTIONS READY") # 上面神经网络结构定义好之后,下面定义一些超参数 training_epochs = 1000 # 所有样本迭代1000次 batch_size = 100 # 每进行一次迭代选择100个样本 display_step = 1 # LAUNCH THE GRAPH sess = tf.Session() # 定义一个Session sess.run(init) # 在sess里run一下初始化操作 # OPTIMIZE for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 逐个batch的去取数据 sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keep_prob:0.5}) avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob:1.0})/total_batch if epoch % display_step == 0: train_accuracy = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0}) test_accuracy = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob:1.0}) print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f" % (epoch, training_epochs, avg_cost, train_accuracy, test_accuracy)) print("DONE")
我用的显卡是GTX960,在跑这个卷积神经网络的时候,第一次filter分别设的是64和128,结果报蜜汁错误了,反正就是我显存不足,所以改成了32和64,让特征图少一点。所以,是让我换1080的意思喽
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:885] Found device 0 with properties: name: GeForce GTX 960 major: 5 minor: 2 memoryClockRate (GHz) 1.304 pciBusID 0000:01:00.0 Total memory: 4.00GiB Free memory: 3.33GiB I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:906] DMA: 0 I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:916] 0: Y I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 960, pci bus id: 0000:01:00.0) W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.59GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 1.34GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.10GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 3.90GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available. Epoch: 000/1000 cost: 0.517761162 TRAIN ACCURACY: 0.970 TEST ACCURACY: 0.967 Epoch: 001/1000 cost: 0.093012387 TRAIN ACCURACY: 0.960 TEST ACCURACY: 0.979 . . . 省略