当前位置:主页 > 软件编程 > Python代码 >

python用dataframe将csv中的0值数据转化为nan缺失值字样

时间:2022-11-09 09:13:48 | 栏目:Python代码 | 点击:

用到这个语句。

c[c==0]=np.nan

我们具体来看一下c和np是什么

np就是我引入的pandas库,
c呢是我读入csv文件的其中一列,列名为“上行业务量GB”
df是整个csv文件的数据,他的类型是dataframe

import numpy as np
import pandas as pd


# 打开文件
FileName= '长期编号.csv'
df = pd.read_csv(FileName, encoding='utf-8')

c = df[['上行业务量GB']]  #选择表格中的'4'列,返回的是DataFrame属性

c[c==0]=np.nan

到这一步,c里的0值都变成nan了。
接下来我们写到新的文件。
我采用将c这一列写回到df中 替换原来的一列

df[['上行业务量GB']] = c

最后,将df写入新的csv里

df.to_csv('补充缺失值后的长期数据.csv')

完整代码如下

"""
Created on Sun Jan 10 18:05:56 2021

@author: Administrator
"""
import numpy as np
import pandas as pd


# 打开文件
FileName= '长期编号.csv'
df = pd.read_csv(FileName, encoding='utf-8')

c = df[['上行业务量GB']]  #选择表格中的'4'列,返回的是DataFrame属性

c[c==0]=np.nan

d[d==0]=np.nan

df[['上行业务量GB']] = c
df.to_csv('补充缺失值后的长期数据.csv')

您可能感兴趣的文章:

相关文章