当前位置:主页 > 软件编程 > Python代码 >

Pandas中批量替换字符的六种方法总结

时间:2022-11-07 09:38:37 | 栏目:Python代码 | 点击:

一、前言

前几天在Python最强王者群有个叫【dcpeng】的粉丝问了一个关于Pandas中的问题,这里拿出来给大家分享下,一起学习。

想问一下我有一列编码为1,2,3,4的数据,如何将1批量换为“开心”,2批量换为“悲伤”这种字符替换呢?

二、解决过程

思路挺简单,限定Pandas处理,想到的方法有很多,这里拿出来给大家分享,希望对大家的学习有帮助。

下面这个是生成源数据的代码:

df = pd.DataFrame({'col1': [1, 2, 2, 3, 3, 3, 4, 4, 4, 4]})
df

方法一

代码如下所示:

df['col2'] = df['col1'].map({1:"开心", 2:"悲伤", 3:"难过", 4:"泪目"})
df

运行结果如下图所示:

方法二

这个方法是参考才哥的文章写出来的,代码如下所示:

def getValue(s):
    if s==1:
        return '开心'
    elif s==2:
        return '悲伤'
    elif s==3:
        return '难过'
    elif s==4:
        return '泪目'
df['col3'] = df['col1'].apply(getValue)
df

运行结果如下图所示:

方法三

【冫马讠成】大佬给了一个思路,使用replace实现。

代码如下所示:

df['col4'] = df['col1'].replace(1, '开心').replace(2, '悲伤').replace(3, '难过').replace(4, '泪目')
df

得到的结果如下所示:

方法四

这个方法是基于apply()函数,代码如下所示:

def get_value(s):
    dict = {1:"开心", 2:"悲伤", 3:"难过", 4:"泪目"}
    return dict[s]
df['col5'] = df['col1'].apply(get_value)
df

运行结果如下图所示:

方法五

【沈复】大佬给了一个思路和代码,如下图所示:

这个方法是基于map()函数,代码如下所示:

def get_value(s):
    dict = {1:"开心", 2:"悲伤", 3:"难过", 4:"泪目"}
    return dict[s]
df['col5'] = df['col1'].map(get_value)
df

运行结果如下图所示:

方法六

这里【月神】仍然是使用replace方法进行实现的,但是代码秀了很多。

代码如下所示:

df['col7'] = df['col1'].replace([1, 2, 3, 4], ['开心', '悲伤', '难过', '泪目'])
df

【月神】提醒:这个是全匹配,不要加regex=True参数,不然你会后悔的!

运行结果如下图所示:

三、总结

这篇文章基于粉丝提问,针对有一列编码为1,2,3,4的数据,如何将1批量换为“开心”,2批量换为“悲伤”这种字符替换的问题,盘点了6个Pandas中批量替换字符的方法,给出了具体说明和演示,顺利地帮助粉丝解决了问题!

您可能感兴趣的文章:

相关文章