时间:2022-10-19 10:50:24 | 栏目:Python代码 | 点击:次
有一道Python面试题, 以下代码有什么局限性,要如何修改
def strTest(num): s = 'Hello' for i in range(num): s += 'x' return s
上面的代码其实可以看出:由于变量str是不变对象,每次遍历,Python都会生成新的str对象来存储新的字符串,所以num越大,创建的str对象就越多,内存消耗约大,速度越慢,性能越差。 如果要改变上面的问题,可以变字符串拼接为join联合的方式,代码如下:
def strTest2(num): s = 'Hello' l = list(s) for i in range(num): l.append('x') return ''.join(l)
下面两种不同处理方式,运行速度的比较:
>>> def strTest1(num): ... s = 'Hello' ... for i in range(num): ... s += 'x' ... return s >>> def strTest2(num): ... s = 'Hello' ... l = list(s) ... for i in range(num): ... l.append(s) ... return ''.join(l) >>> >>> from timeit import timeit # 运行10万级别数据,运行速度比对 >>> timeit("strTest1(100000)", setup="from __main__ import strTest1", number=1) 0.016680980406363233 >>> timeit("strTest2(100000)", setup="from __main__ import strTest2", number=1) 0.009688869110618725 # 运行100万级别数据,运行速度比对 >>> timeit("strTest1(1000000)", setup="from __main__ import strTest1", number=1) 0.14558920607187195 >>> timeit("strTest2(1000000)", setup="from __main__ import strTest2", number=1) 0.1335057276853462 # 运行1000万级别数据,运行速度比对 >>> timeit("strTest1(10000000)", setup="from __main__ import strTest1", number=1) 5.9497953107860475 >>> timeit("strTest2(10000000)", setup="from __main__ import strTest2", number=1) 1.3268972136649921 # 运行2000万级别数据,运行速度比对 >>> timeit("strTest1(20000000)", setup="from __main__ import strTest1", number=1) 21.661270140499056 >>> timeit("strTest2(20000000)", setup="from __main__ import strTest2", number=1) 2.6981786518920217 # 运行3000万级别数据,运行速度比对 >>> timeit("strTest1(30000000)", setup="from __main__ import strTest1", number=1) 49.858089123966295 >>> timeit("strTest2(30000000)", setup="from __main__ import strTest2", number=1) 4.285787770209481 # 运行4000万级别数据,运行速度比对 >>> timeit("strTest1(40000000)", setup="from __main__ import strTest1", number=1) 86.67876273457563 >>> timeit("strTest2(40000000)", setup="from __main__ import strTest2", number=1) 5.328653452047092 # 运行5000万级别数据,运行速度比对 >>> timeit("strTest1(50000000)", setup="from __main__ import strTest1", number=1) 130.59138063819023 >>> timeit("strTest2(50000000)", setup="from __main__ import strTest2", number=1) 6.8375931077291625 # 运行6000万级别数据,运行速度比对 >>> timeit("strTest1(60000000)", setup="from __main__ import strTest1", number=1) 188.28227241975003 >>> timeit("strTest2(60000000)", setup="from __main__ import strTest2", number=1) 8.080144489401846 # 运行7000万级别数据,运行速度比对 >>> timeit("strTest1(70000000)", setup="from __main__ import strTest1", number=1) 256.54383904350277 >>> timeit("strTest2(70000000)", setup="from __main__ import strTest2", number=1) 9.387400816458012 # 运行8000万级别数据,运行速度比对 >>> timeit("strTest1(80000000)", setup="from __main__ import strTest1", number=1) 333.7185806572388 >>> timeit("strTest2(80000000)", setup="from __main__ import strTest2", number=1) 10.946627677462857
从上面的比对数据可以看出,当数据比较小的时候,两者差别不大,当数据越大,两者性能差距就越大。从而可以看出,字符串拼接的方式一旦碰到大数据处理的时候,性能是非常慢的。
总结