时间:2022-09-17 10:28:36 | 栏目:Python代码 | 点击:次
1.标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([200, 200, 240]), np.array([255, 255, 255])),把[200, 200, 200]~[255, 255, 255]以外的颜色处理为0
2.使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果
3.使用inpaint方法,把噪声的mask作为参数,推理并修复图片
1.从源图片,截取右下角部分,另存为新图片
2.识别水印,颜色值为:[200, 200, 200]~[255, 255, 255]
3.去掉水印,还原图片
4.把源图片、去掉水印的新图片,进行重叠合并
import cv2 import numpy as np from PIL import Image import os dir = os.getcwd() path = "1.jpg" newPath = "new.jpg" img=cv2.imread(path,1) hight,width,depth=img.shape[0:3] #截取 cropped = img[int(hight*0.8):hight, int(width*0.7):width] # 裁剪坐标为[y0:y1, x0:x1] cv2.imwrite(newPath, cropped) imgSY = cv2.imread(newPath,1) #图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0 thresh = cv2.inRange(imgSY,np.array([200,200,200]),np.array([250,250,250])) #创建形状和尺寸的结构元素 kernel = np.ones((3,3),np.uint8) #扩展待修复区域 hi_mask = cv2.dilate(thresh,kernel,iterations=10) specular = cv2.inpaint(imgSY,hi_mask,5,flags=cv2.INPAINT_TELEA) cv2.imwrite(newPath, specular) #覆盖图片 imgSY = Image.open(newPath) img = Image.open(path) img.paste(imgSY, (int(width*0.7),int(hight*0.8),width,hight)) img.save(newPath) import cv2 import numpy as np from PIL import Image import os dir = os.getcwd() path = "1.jpg" newPath = "new.jpg" img=cv2.imread(path,1) hight,width,depth=img.shape[0:3] #截取 cropped = img[int(hight*0.8):hight, int(width*0.7):width] # 裁剪坐标为[y0:y1, x0:x1] cv2.imwrite(newPath, cropped) imgSY = cv2.imread(newPath,1) #图片二值化处理,把[200,200,200]-[250,250,250]以外的颜色变成0 thresh = cv2.inRange(imgSY,np.array([200,200,200]),np.array([250,250,250])) #创建形状和尺寸的结构元素 kernel = np.ones((3,3),np.uint8) #扩展待修复区域 hi_mask = cv2.dilate(thresh,kernel,iterations=10) specular = cv2.inpaint(imgSY,hi_mask,5,flags=cv2.INPAINT_TELEA) cv2.imwrite(newPath, specular) #覆盖图片 imgSY = Image.open(newPath) img = Image.open(path) img.paste(imgSY, (int(width*0.7),int(hight*0.8),width,hight)) img.save(newPath)
没去水印前:
去了后: