当前位置:主页 > 软件编程 > Python代码 >

OpenCV半小时掌握基本操作之高斯双边

时间:2022-08-13 12:18:37 | 栏目:Python代码 | 点击:

【OpenCV】 ⚠️高手勿入! 半小时学会基本操作 ⚠️ 高斯双边

概述

OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天带大家用 OpenCV 来实现一个简单的磨皮.

在这里插入图片描述

边缘保留滤波 (EPF)

边缘保留滤波 (Edge Preserving Filter) 是图像处理的一种技术. 有别与传统滤波, EPF 会对差别较大的像素区域进行区分, 在保持边缘锐利的同时消除噪声或纹理.

高斯双边

双边滤波 (Bilateral Filter) 即高斯滤波. 滤波器由两个函数构成. 一个函数是由集合空间距离决定滤波器系数. 另一个是由像素差值决定滤波系数.

在这里插入图片描述

格式:

cv2.bilateralFilter(src, d, sigmaColor, sigmaSpace, dst=None, borderType=None)

参数:

例子:

import numpy as np
import cv2

# 读取图片
image = cv2.imread("face.jpg")

# 高斯二边
dest = cv2.bilateralFilter(image, 0, 100, 15)

# 图片展示
combine = np.hstack((image, dest))
cv2.imshow("combine", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 保存结果
cv2.imwrite("bilateral.jpg", combine)

输出结果:

在这里插入图片描述

高斯模糊 vs 高斯双边:

在这里插入图片描述

均值迁移

均值迁移 (Mean-Shift Blur) 会计算得到像素均值与空间位置均值, 使用新的均值作为窗口中心位置.

格式:

cv2.pyrMeanShiftFiltering(src, sp, sr, dst=None, maxLevel=None, termcrit=None)

参数:

例子:

import numpy as np
import cv2

# 读取图片
image = cv2.imread("face.jpg")

# 均值迁移
dest = cv2.pyrMeanShiftFiltering(image, 10, 50)

# 图片展示
combine = np.hstack((image, dest))
cv2.imshow("combine", combine)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 图片保存
cv2.imwrite("mean_shift.jpg", combine)

输出结果:

在这里插入图片描述

您可能感兴趣的文章:

相关文章