当前位置:主页 > 数据库 > Redis >

为何Redis使用跳表而非红黑树实现SortedSet

时间:2022-08-02 09:20:14 | 栏目:Redis | 点击:

知道跳表(Skip List)是在看关于Redis的书的时候,Redis中的有序集合使用了跳表数据结构。接着就查了一些博客,来学习一下跳表。后面会使用Java代码来简单实现跳表。

什么是跳表

跳表由William Pugh发明,他在论文《Skip lists: a probabilistic alternative to balanced trees》中详细介绍了跳表的数据结构和插入删除等操作,论文是这么介绍跳表的:

Skip lists are a data structure that can be used in place of balanced trees.Skip lists use probabilistic balancing rather than strictly enforced balancing and as a result the algorithms for insertion and deletion in skip lists are much simpler and significantly faster than equivalent algorithms for balanced trees.

也就是说,跳表可以用来替代红黑树,使用概率均衡技术,使得插入、删除操作更简单、更快。先来看论文里的一张图:

这里写图片描述

观察上图

一个拥有k个指针的结点称为一个k层结点(level k node)。按照上面的逻辑,50%的结点为1层,25%的结点为2层,12.5%的结点为3层…如果每个结点的层数随机选取,但仍服从这样的分布呢(上图e,对比上图d)?

使一个k层结点的第i个指针指向第i层的下一个结点,而不是它后面的第2^(i-1)个结点,那么结点的插入和删除只需要原地修改操作;一个结点的层数,是在它被插入的时候随机选取的,并且永不改变。因为这样的数据结构是基于链表的,并且额外的指针会跳过中间结点,所以作者称之为跳表(Skip Lists)。

二分查找底层依赖数组随机访问的特性,所以只能用数组实现。若数据存储在链表,就没法用二分搜索了?

其实只需稍微改造下链表,就能支持类似“二分”的搜索算法,即跳表(Skip list),支持快速的新增、删除、搜索操作。

Redis中的有序集合(Sorted Set)就是用跳表实现的。我们知道红黑树也能实现快速的插入、删除和查找操作。那Redis 为何不选择红黑树来实现呢?

跳表的意义究竟在于何处?

单链表即使存储的数据有序,若搜索某数据,也只能从头到尾遍历,搜索效率很低,平均时间复杂度是O(n)。

追求极致的程序员就开始想了,那这该如何提高链表结构的搜索效率呢?
若如下图,对链表建立一级“索引”,每两个结点提取一个结点到上一级,把抽出来的那级叫作索引或索引层。图中的down表示down指针,指向下一级结点。


比如要搜索16:

先遍历索引层,当遍历到索引层的13时,发现下一个结点是17,说明目标结点位于这俩结点中间

然后通过down指针,下降到原始链表层,继续遍历
此时只需再遍历2个结点,即可找到16!

原先单链表结构需遍历10个结点,现在只需遍历7个结点即可。可见,加一层索引,所需遍历的结点个数就减少了,搜索效率提升。

若再加层索引,搜索效率是不是更高?于是每两个结点再抽出一个结点到第二级索引。现在搜索16,只需遍历6个结点了!


这里数据量不大,可能你也没感觉到搜索效率ROI高吗。

那数据量就变大一点,现有一64结点链表,给它建立五级的索引。


原来没有索引时,单链表搜索62需遍历62个结点!
现在呢?只需遍历11个!所以你现在能体会到了,当链表长度n很大时,建立索引后,搜索性能显著提升。

这种有多级索引的,可以提高查询效率的链表就是最近火遍面试圈的跳表。
作为严谨的程序员,我们又开始好奇了

跳表的搜索时间复杂度

我们都知道单链表搜索时间复杂度O(n),那如此快的跳表呢?

若链表有n个结点,会有多少级索引呢?假设每两个结点抽出一个结点作为上级索引,则:

假设索引有h级,最高级索引有2个结点,可得:n/(2h) = 2

所以:h = log2n-1

若包含原始链表这一层,整个跳表的高度就是log2 n。我们在跳表中查询某个数据的时候,如果每一层都要遍历m个结点,那在跳表中查询一个数据的时间复杂度就是O(m*logn)。

那这个m的值是多少呢?按照前面这种索引结构,我们每一级索引都最多只需要遍历3个结点,也就是说m=3,为什么是3呢?我来解释一下。

假设我们要查找的数据是x,在第k级索引中,我们遍历到y结点之后,发现x大于y,小于后面的结点z,所以我们通过y的down指针,从第k级索引下降到第k-1级索引。在第k-1级索引中,y和z之间只有3个结点(包含y和z),所以,我们在K-1级索引中最多只需要遍历3个结点,依次类推,每一级索引都最多只需要遍历3个结点。

通过上面的分析,我们得到m=3,所以在跳表中查询任意数据的时间复杂度就是O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找,是不是很神奇?不过,天下没有免费的午餐,这种查询效率的提升,前提是建立了很多级索引,也就是我们在第6节讲过的空间换时间的设计思路。

跳表是不是很费内存?

由于跳表要存储多级索引,势必比单链表消耗更多存储空间。那到底是多少呢?
若原始链表大小为n:

多级结点数的总和就是:

n/2+n/4+n/8…+8+4+2=n-2

所以空间复杂度是O(n)。这个量还是挺大的,能否再稍微降低索引占用的内存空间呢?
若每三五个结点才抽取一个到上级索引呢?

假设最高级索引结点个数为1,总索引结点数:n/3+n/9+n/27+…+9+3+1=n/2

尽管空间复杂度还是O(n),但比上面的每两个结点抽一个结点的索引构建方法,要减少了一半的索引结点存储空间。

我们大可不必过分在意索引占用的额外空间,实际开发中,原始链表中存储的有可能是很大的对象,而索引结点只需存储关键值和几个指针,无需存储对象,所以当对象比索引结点大很多时,那索引占用的额外空间可忽略。

插入和删除的时间复杂度

插入

在跳表中插入一个数据,只需O(logn)时间复杂度。
单链表中,一旦定位好要插入的位置,插入的时间复杂度是O(1)。但这里为了保证原始链表中数据的有序性,要先找到插入位置,所以这个过程中的查找操作比较耗时。

单纯的单链表,需遍历每个结点以找到插入的位置。但跳表搜索某结点的的时间复杂度是O(logn),所以搜索某数据应插入的位置的时间复杂度也是O(logn)。

删除

如果这个结点在索引中也有出现,除了要删除原始链表的结点,还要删除索引中的。
因为单链表删除操作需拿到要删除结点的前驱结点,然后通过指针完成删除。所以查找要删除结点时,一定要获取前驱结点。若是双向链表,就没这个问题了。

跳表索引动态更新

当不停往跳表插入数据时,若不更新索引,就可能出现某2个索引结点之间数据非常多。极端情况下,跳表还会退化成单链表。


作为一种动态数据结构,我们需要某种手段来维护索引与原始链表大小之间的平衡,也就是说,如果链表中结点多了,索引结点就相应地增加一些,避免复杂度退化,以及查找、插入、删除操作性能下降。

像红黑树、AVL树这样的平衡二叉树通过左右旋保持左右子树的大小平衡,而跳表是通过随机函数维护前面提到的“平衡性”。

往跳表插入数据时,可以选择同时将这个数据插入到部分索引层中。

那如何选择加入哪些索引层呢?

通过一个随机函数决定将这个结点插入到哪几级索引中,比如随机函数生成了值K,那就把这个结点添加到第一级到第K级这K级索引中。

为何Redis要用跳表来实现有序集合,而不是红黑树?

Redis中的有序集合支持的核心操作主要支持:

除了性能,还有其它原因:

因为红黑树比跳表诞生更早,很多编程语言中的Map类型(比如JDK 的 HashMap)都是通过红黑树实现的。业务开发时,直接从JDK拿来用,但跳表没有一个现成的实现,只能自己实现。

跳表的代码实现(Java 版)

数据结构定义

表中的元素使用结点来表示,结点的层数在它被插入时随机计算决定(与表中已有结点数目无关)。

一个i层的结点有i个前向指针(java中使用结点对象数组forward来表示),索引为从1到i。用MaxLevel来记录跳表的最大层数。

跳表的层数为当前所有结点中的最大层数(如果list为空,则层数为1)。

列表头header拥有从1到MaxLevel的前向指针:

public class SkipList<T> {

    // 最高层数
    private final int MAX_LEVEL;
    // 当前层数
    private int listLevel;
    // 表头
    private SkipListNode<T> listHead;
    // 表尾
    private SkipListNode<T> NIL;
    // 生成randomLevel用到的概率值
    private final double P;
    // 论文里给出的最佳概率值
    private static final double OPTIMAL_P = 0.25;
    
    public SkipList() {
        // 0.25, 15
        this(OPTIMAL_P, (int)Math.ceil(Math.log(Integer.MAX_VALUE) / Math.log(1 / OPTIMAL_P)) - 1);
    }

    public SkipList(double probability, int maxLevel) {
        P = probability;
        MAX_LEVEL = maxLevel;

        listLevel = 1;
        listHead = new SkipListNode<T>(Integer.MIN_VALUE, null, maxLevel);
        NIL = new SkipListNode<T>(Integer.MAX_VALUE, null, maxLevel);
        for (int i = listHead.forward.length - 1; i >= 0; i--) {
            listHead.forward[i] = NIL;
        }
    }

    // 内部类
    class SkipListNode<T> {
        int key;
        T value;
        SkipListNode[] forward;
        
        public SkipListNode(int key, T value, int level) {
            this.key = key;
            this.value = value;
            this.forward = new SkipListNode[level];
        }
    }
}

搜索算法

按key搜索,找到返回该key对应的value,未找到则返回null。

通过遍历forward数组来需找特定的searchKey。假设skip list的key按照从小到大的顺序排列,那么从跳表的当前最高层listLevel开始寻找searchKey。在某一层找到一个非小于searchKey的结点后,跳到下一层继续找,直到最底层为止。那么根据最后搜索停止位置的下一个结点,就可以判断searchKey在不在跳表中。

在跳表中找8的过程:

这里写图片描述 

插入和删除算法

都是通过查找与连接(search and splice):

这里写图片描述

维护一个update数组,在搜索结束之后,update[i]保存的是待插入/删除结点在第i层的左侧结点。

插入

若key不存在,则插入该key与对应的value;若key存在,则更新value。

如果待插入的结点的层数高于跳表的当前层数listLevel,则更新listLevel。

选择待插入结点的层数randomLevel:

randomLevel只依赖于跳表的最高层数和概率值p。

另一种实现方法为,如果生成的randomLevel大于当前跳表的层数listLevel,那么将randomLevel设置为listLevel+1,这样方便以后的查找,在工程上是可以接受的,但同时也破坏了算法的随机性。

删除

删除特定的key与对应的value。如果待删除的结点为跳表中层数最高的结点,那么删除之后,要更新listLevel。

public class SkipList<T> {

    // 最高层数
    private final int MAX_LEVEL;
    // 当前层数
    private int listLevel;
    // 表头
    private SkipListNode<T> listHead;
    // 表尾
    private SkipListNode<T> NIL;
    // 生成randomLevel用到的概率值
    private final double P;
    // 论文里给出的最佳概率值
    private static final double OPTIMAL_P = 0.25;

    public SkipList() {
        // 0.25, 15
        this(OPTIMAL_P, (int)Math.ceil(Math.log(Integer.MAX_VALUE) / Math.log(1 / OPTIMAL_P)) - 1);
    }

    public SkipList(double probability, int maxLevel) {
        P = probability;
        MAX_LEVEL = maxLevel;

        listLevel = 1;
        listHead = new SkipListNode<T>(Integer.MIN_VALUE, null, maxLevel);
        NIL = new SkipListNode<T>(Integer.MAX_VALUE, null, maxLevel);
        for (int i = listHead.forward.length - 1; i >= 0; i--) {
            listHead.forward[i] = NIL;
        }
    }

    // 内部类
    class SkipListNode<T> {
        int key;
        T value;
        SkipListNode[] forward;
        
        public SkipListNode(int key, T value, int level) {
            this.key = key;
            this.value = value;
            this.forward = new SkipListNode[level];
        }
    }

    public T search(int searchKey) {
        SkipListNode<T> curNode = listHead;

        for (int i = listLevel; i > 0; i--) {
            while (curNode.forward[i].key < searchKey) {
                curNode = curNode.forward[i];
            }
        }

        if (curNode.key == searchKey) {
            return curNode.value;
        } else {
            return null;
        }
    }

    public void insert(int searchKey, T newValue) {
        SkipListNode<T>[] update = new SkipListNode[MAX_LEVEL];
        SkipListNode<T> curNode = listHead;

        for (int i = listLevel - 1; i >= 0; i--) {
            while (curNode.forward[i].key < searchKey) {
                curNode = curNode.forward[i];
            }
            // curNode.key < searchKey <= curNode.forward[i].key
            update[i] = curNode;
        }

        curNode = curNode.forward[0];

        if (curNode.key == searchKey) {
            curNode.value = newValue;
        } else {
            int lvl = randomLevel();

            if (listLevel < lvl) {
                for (int i = listLevel; i < lvl; i++) {
                    update[i] = listHead;
                }
                listLevel = lvl;
            }

            SkipListNode<T> newNode = new SkipListNode<T>(searchKey, newValue, lvl);

            for (int i = 0; i < lvl; i++) {
                newNode.forward[i] = update[i].forward[i];
                update[i].forward[i] = newNode;
            }
        }
    }

    public void delete(int searchKey) {
        SkipListNode<T>[] update = new SkipListNode[MAX_LEVEL];
        SkipListNode<T> curNode = listHead;

        for (int i = listLevel - 1; i >= 0; i--) {
            while (curNode.forward[i].key < searchKey) {
                curNode = curNode.forward[i];
            }
            // curNode.key < searchKey <= curNode.forward[i].key
            update[i] = curNode;
        }

        curNode = curNode.forward[0];

        if (curNode.key == searchKey) {
            for (int i = 0; i < listLevel; i++) {
                if (update[i].forward[i] != curNode) {
                    break;
                }
                update[i].forward[i] = curNode.forward[i];
            }

            while (listLevel > 0 && listHead.forward[listLevel - 1] == NIL) {
                listLevel--;
            }
        }
    }

    private int randomLevel() {
        int lvl = 1;
        while (lvl < MAX_LEVEL && Math.random() < P) {
            lvl++;
        }
        return lvl;
    }

    public void print() {
    for (int i = listLevel - 1; i >= 0; i--) {
            SkipListNode<T> curNode = listHead.forward[i];
            while (curNode != NIL) {
                System.out.print(curNode.key + "->");
                curNode = curNode.forward[i];
            }
            System.out.println("NIL");
        }
    }

    public static void main(String[] args) {
        SkipList<Integer> sl = new SkipList<Integer>();
        sl.insert(20, 20);
        sl.insert(5, 5);
        sl.insert(10, 10);
        sl.insert(1, 1);
        sl.insert(100, 100);
        sl.insert(80, 80);
        sl.insert(60, 60);
        sl.insert(30, 30);
        sl.print();
        System.out.println("---");
        sl.delete(20);
        sl.delete(100);
        sl.print();
    }
}

您可能感兴趣的文章:

相关文章