当前位置:主页 > 软件编程 > Python代码 >

Python查询缺失值的4种方法总结

时间:2022-07-26 10:03:38 | 栏目:Python代码 | 点击:

在我们日常接触到的Python中,狭义的缺失值一般指DataFrame中的NaN。广义的话,可以分为三种。

今天聊聊Python中查询缺失值的4种方法。

缺失值 NaN ①

在Pandas中查询缺失值,最常用的?法就是isnull(),返回True表示此处为缺失值。

我们可以将其与any()?法搭配使用来查询存在缺失值的行,也可以与sum()?法搭配使用来查询存在缺失值的列。

在交互式环境中输入如下命令:

df.isnull()

输出:

图片

在交互式环境中输入如下命令:

df.isnull().any(axis=1)

输出:

图片

在交互式环境中输入如下命令:

df.isnull().sum()

输出:

图片

注:isna()和isnull()的用法是相同的,这里不再演示

缺失值 NaN ②

由于在Pandas中isnull()方法返回True表示此处为缺失值,所以我们可以对数据集进行切片也可实现找到缺失值。

在交互式环境中输入如下命令:

df[df.isnull().values==True]

输出:

图片

注意:如果某行有多个值是空值,则会重复次数出现,所以我们可以利用df[df.isnull().values==True].drop_duplicates()来去重。

另外,notnull()方法是与isnull()相对应的,使用它可以直接查询非缺失值的数据行。

df[df["A列"].notnull()]

输出:

图片

空值

空值在Pandas中指的是空字符串"",我们同样可以对数据集进行切片找到空值。

在交互式环境中输入如下命令:

df[df["B列"] == ""]

输出:

图片

此外,也可以利用空值与正常值的区别来区分两者,比如isnumeric()方法检测字符串是否只由数字组成。

在交互式环境中输入如下命令:

df[df["B列"].str.isnumeric() == False ]

输出:

图片

如上所示,同样查询到了数据集中的空值。

字符“-”、“?”等

很多时候,我们要处理的是本地的历史数据文件,在这些Excel中往往并不规范,比如它们有可能会使用“*”、“?”、“—”、“!”等等字符来表示缺失值。

对于这类文本,我们可以使用正则表达式来匹配缺失值。

import re
df[df["C列"].apply(lambda x: len(re.findall('NA|[*|?|!|#|-]', x)) != 0)]

输出:

图片

如上所示,我自定义了匿名函数lambda,作用是在文本列的每一行中查找以下文本值:“NA”、“*”、“?” 、“!” 、“#”、“-”,并检查它找到的列表的长度。如果列表不为零,则表示找到了代表缺失值的字符,因此该行中至少有一个缺失值。

df[df["D列"].apply(lambda x: len(re.findall('NA|[*|?|!|#|-]', x)) != 0)]

输出:

图片

我们可以对不同列都进行同样的缺失值查询,另外也可以根据自己的实际情况,替换正则表达式中代表缺失值的字符。

您可能感兴趣的文章:

相关文章