时间:2022-07-12 10:56:30 | 栏目:Python代码 | 点击:次
想要使用摄像头实现一个多人姿态识别
官网连接 https://anaconda.cloud/installers
检查Jupyter Notebook是否安装
Tip:这里涉及到一个切换Jupyter Notebook内核的问题,在我这篇文章中有提到
AnacondaNavigator Jupyter Notebook更换Python内核https://www.jb51.net/article/238496.htm
打开Anaconda Prompt
切换到项目目录
输入Jupyter notebook
在浏览器中打开 Jupyter Notebook
并创建新的记事本
图片以及训练库都在下方链接
https://github.com/quanhua92/human-pose-estimation-opencv
将图片和训练好的模型放到项目路径中graph_opt.pb
为训练好的模型
import cv2 as cv import os import matplotlib.pyplot as plt
net=cv.dnn.readNetFromTensorflow("graph_opt.pb")
inWidth=368 inHeight=368 thr=0.2 BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4, "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9, "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14, "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 } POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"], ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"], ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"], ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]
img = cv.imread("image.jpg")
plt.imshow(img)
plt.imshow(cv.cvtColor(img,cv.COLOR_BGR2RGB))
def pose_estimation(frame): frameWidth=frame.shape[1] frameHeight=frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = out[:, :19, :, :] # MobileNet output [1, 57, -1, -1], we only need the first 19 elements assert(len(BODY_PARTS) == out.shape[1]) points = [] for i in range(len(BODY_PARTS)): # Slice heatmap of corresponging body's part. heatMap = out[0, i, :, :] # Originally, we try to find all the local maximums. To simplify a sample # we just find a global one. However only a single pose at the same time # could be detected this way. _, conf, _, point = cv.minMaxLoc(heatMap) x = (frameWidth * point[0]) / out.shape[3] y = (frameHeight * point[1]) / out.shape[2] # Add a point if it's confidence is higher than threshold. points.append((int(x), int(y)) if conf > thr else None) for pair in POSE_PAIRS: partFrom = pair[0] partTo = pair[1] assert(partFrom in BODY_PARTS) assert(partTo in BODY_PARTS) idFrom = BODY_PARTS[partFrom] idTo = BODY_PARTS[partTo] # 绘制线条 if points[idFrom] and points[idTo]: cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3) cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) t, _ = net.getPerfProfile() freq = cv.getTickFrequency() / 1000 cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) return frame # 处理图片 estimated_image=pose_estimation(img) # 显示图片 plt.imshow(cv.cvtColor(estimated_image,cv.COLOR_BGR2RGB))
Tip:与上面图片识别代码是衔接的
视频来自互联网,侵删
cap = cv.VideoCapture('testvideo.mp4') cap.set(3,800) cap.set(4,800) if not cap.isOpened(): cap=cv.VideoCapture(0) raise IOError("Cannot open vide") while cv.waitKey(1) < 0: hasFrame,frame=cap.read() if not hasFrame: cv.waitKey() break frameWidth=frame.shape[1] frameHeight=frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = out[:, :19, :, :] # MobileNet output [1, 57, -1, -1], we only need the first 19 elements assert(len(BODY_PARTS) == out.shape[1]) points = [] for i in range(len(BODY_PARTS)): # Slice heatmap of corresponging body's part. heatMap = out[0, i, :, :] # Originally, we try to find all the local maximums. To simplify a sample # we just find a global one. However only a single pose at the same time # could be detected this way. _, conf, _, point = cv.minMaxLoc(heatMap) x = (frameWidth * point[0]) / out.shape[3] y = (frameHeight * point[1]) / out.shape[2] # Add a point if it's confidence is higher than threshold. points.append((int(x), int(y)) if conf > thr else None) for pair in POSE_PAIRS: partFrom = pair[0] partTo = pair[1] assert(partFrom in BODY_PARTS) assert(partTo in BODY_PARTS) idFrom = BODY_PARTS[partFrom] idTo = BODY_PARTS[partTo] if points[idFrom] and points[idTo]: cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3) cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) t, _ = net.getPerfProfile() freq = cv.getTickFrequency() / 1000 cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) cv.imshow('Video Tutorial',frame)
Tip:与上面图片识别代码是衔接的
cap = cv.VideoCapture(0) cap.set(cv.CAP_PROP_FPS,10) cap.set(3,800) cap.set(4,800) if not cap.isOpened(): cap=cv.VideoCapture(0) raise IOError("Cannot open vide") while cv.waitKey(1) < 0: hasFrame,frame=cap.read() if not hasFrame: cv.waitKey() break frameWidth=frame.shape[1] frameHeight=frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = out[:, :19, :, :] # MobileNet output [1, 57, -1, -1], we only need the first 19 elements assert(len(BODY_PARTS) == out.shape[1]) points = [] for i in range(len(BODY_PARTS)): # Slice heatmap of corresponging body's part. heatMap = out[0, i, :, :] # Originally, we try to find all the local maximums. To simplify a sample # we just find a global one. However only a single pose at the same time # could be detected this way. _, conf, _, point = cv.minMaxLoc(heatMap) x = (frameWidth * point[0]) / out.shape[3] y = (frameHeight * point[1]) / out.shape[2] # Add a point if it's confidence is higher than threshold. points.append((int(x), int(y)) if conf > thr else None) for pair in POSE_PAIRS: partFrom = pair[0] partTo = pair[1] assert(partFrom in BODY_PARTS) assert(partTo in BODY_PARTS) idFrom = BODY_PARTS[partFrom] idTo = BODY_PARTS[partTo] if points[idFrom] and points[idTo]: cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3) cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) t, _ = net.getPerfProfile() freq = cv.getTickFrequency() / 1000 cv.putText(frame, '%.2fms' % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) cv.imshow('Video Tutorial',frame)
DeepLearning_by_PhDScholar
Human Pose Estimation using opencv | python | OpenPose | stepwise implementation for beginners
https://www.youtube.com/watch?v=9jQGsUidKHs