当前位置:主页 > 软件编程 > Python代码 >

python中进程间通信及设置状态量控制另一个进程

时间:2022-07-09 09:36:56 | 栏目:Python代码 | 点击:

一、python中进程间通信

业务场景:在当前遇到的业务场景中,我们需要启一个间隔任务,这个间隔任务跑一个算法,然后把算法的结果进行一些处理,并入库。任务目前间隔是一小时,算法运行时间要50多分钟,留给结果处理的时间并不多,所以有可能会出现超时。目前来说,优化方向在算法上会更为合理,因为结果处理本来就不用很多时间。但是在这个业务场景下,想要把结果处理的时间进行无限压缩,压缩到0,其实也是可以实现的,说是压缩为0,实际上就是在算法执行完成后,再启一个进程去处理,这样就不会由于需要进行数据处理而影响到算法的运行,将算法和结果处理分为两个独立的进程去处理。在最开始的程序中,是把算法运行和结果处理作为一个周期,而现在是把算法运行和结果处理分为两个周期去处理。

技术实现方案:

启动二个进程,其中一个运行算法,在算法运行结束后,发送一个状态值到另外一个进程,另外一个进程在收到状态量后启动数据处理即可。两个进程间互不影响即可。其实也相当于算法进程控制数据处理进程

测试场景构造代码:

from multiprocessing import Process,Pipe
import time
import sys
import os
def send_message(conn):
    for i in range(1000):
        print('send_message:%d'%i)
        print(os.getpid())
        conn.send(i)
        time.sleep(3)
def send_message1(conn):
    # for i in range(1000):
    print(conn.recv())
    while True:
        if conn.recv() % 5 == 0:
            print(' today is nice day')
        time.sleep(1)
if __name__ == '__main__':
        #创建一个进程通信管道
    left,right = Pipe()
    t1 = Process(target=send_message,args=(left,))
    t2 = Process(target=send_message1,args=(right,))
    t1.start()
    t2.start()

在这个案例场景下有一些需要注意的点:

二、设置状态量控制另一个进程

 业务场景:在当前遇到的业务场景中,我们需要启一个间隔任务,这个间隔任务跑一个算法,然后把算法的结果进行一些处理,并入库。任务目前间隔是一小时,算法运行时间要50多分钟,留给结果处理的时间并不多,所以有可能会出现超时。目前来说,优化方向在算法上会更为合理,因为结果处理本来就不用很多时间。但是在这个业务场景下,想要把结果处理的时间进行无限压缩,压缩到0,其实也是可以实现的,说是压缩为0,实际上就是在算法执行完成后,再启一个进程去处理,这样就不会由于需要进行数据处理而影响到算法的运行,将算法和结果处理分为两个独立的进程去处理。在最开始的程序中,是把算法运行和结果处理作为一个周期,而现在是把算法运行和结果处理分为两个周期去处理。

上面的解决方案中只涉及到了启用两个进程去运行两个任务,并未涉及到启用定时任务框架,所以可能会显得和上述的业务场景不一致,所以在这里重新解决一下。上面也是没有问题的,只是把定时任务框架也作为一个任务去处理即可。然后在定时任务运行完程后,向另外一个进程传入一个参数,作为启动另一个进程的状态量即可。当然,在这里,两个进程还是完全占满的,即处理阻塞状态。对于资源的利用还是没有完全达到最好。后续再考虑使用进程池的方式,看是否可以让其中的一个进程运行完后直接释放资源。

技术解决方案如下:

from multiprocessing import Process,Pipe
import time
from apscheduler.schedulers.background import BackgroundScheduler
from apscheduler.schedulers.blocking import BlockingScheduler
from apscheduler.schedulers.asyncio import AsyncIOScheduler
# schedule = BackgroundScheduler()
schedule = BlockingScheduler(timezone="Asia/Shanghai")
# schedule = AsyncIOScheduler(timezone="Asia/Shanghai")
def algorithm(conn):
    print('start_run')
    conn.send('please run')
    # time.sleep(5)
def worth_result(conn):
    while True:
        if conn.recv() == 'please run':
            print(conn.recv() + ' very nice!')
def time_job(conns):
    schedule.add_job(func=algorithm,trigger='interval',seconds=5,args=(conns,))
    schedule.start()
if __name__ == '__main__':
    left,right = Pipe()
    t1 = Process(target=time_job,args=(left,))
    t2 = Process(target=worth_result,args=(right,))
    t1.start()
    t2.start()

在这里还有一些点需要说明,定时任务选择那一种类型其实都没有关系,阻塞和非阻塞其实没有关系,因为我们在这里是直接启了两个进程,每个进程间是相互独立的,并非是在定时任务下启用的两个进程,所以不会影响的。

关于这个解决方案还有的问题:

分布式处理的思想越来越浓。

您可能感兴趣的文章:

相关文章