当前位置:主页 > 软件编程 > Python代码 >

pytorch中的torch.nn.Conv2d()函数图文详解

时间:2022-06-19 10:26:04 | 栏目:Python代码 | 点击:

一、官方文档介绍

官网

nn.Conv2d:对由多个输入平面组成的输入信号进行二维卷积

二、torch.nn.Conv2d()函数详解

参数详解

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)

参数 参数类型    
in_channels int Number of channels in the input image 输入图像通道数
out_channels int Number of channels produced by the convolution 卷积产生的通道数
kernel_size (int or tuple) Size of the convolving kernel 卷积核尺寸,可以设为1个int型数或者一个(int, int)型的元组。例如(2,3)是高2宽3卷积核
stride (int or tuple, optional) Stride of the convolution. Default: 1 卷积步长,默认为1。可以设为1个int型数或者一个(int, int)型的元组。
padding (int or tuple, optional) Zero-padding added to both sides of the input. Default: 0 填充操作,控制padding_mode的数目。
padding_mode (string, optional) ‘zeros’, ‘reflect’, ‘replicate’ or ‘circular’. Default: ‘zeros’ padding模式,默认为Zero-padding 。
dilation (int or tuple, optional) Spacing between kernel elements. Default: 1 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。
groups (int, optional) Number of blocked connections from input channels to output channels. Default: 1 group参数的作用是控制分组卷积,默认不分组,为1组。
bias (bool, optional) If True, adds a learnable bias to the output. Default: True 为真,则在输出中添加一个可学习的偏差。默认:True。

参数dilation——扩张卷积(也叫空洞卷积)

dilation操作动图演示如下:

Dilated Convolution with a 3 x 3 kernel and dilation rate 2

扩张卷积核为3×3,扩张率为2

参数groups——分组卷积

Group Convolution顾名思义,则是对输入feature map进行分组,然后每组分别卷积。

三、代码实例

import torch

x = torch.randn(3,1,5,4)
print(x)

conv = torch.nn.Conv2d(1,4,(2,3))
res = conv(x)

print(res.shape)    # torch.Size([3, 4, 4, 2])

输入:x[ batch_size, channels, height_1, width_1 ]

卷积操作:Conv2d[ channels, output, height_2, width_2 ]

输出:res[ batch_size,output, height_3, width_3 ]

一个样本卷积示例:

总结 

您可能感兴趣的文章:

相关文章