当前位置:主页 > 软件编程 > C代码 >

C++超详细实现二叉树的遍历

时间:2022-06-09 09:20:55 | 栏目:C代码 | 点击:

二叉树的遍历

Q:什么是二叉树的遍历?

A:二叉树的遍历是指从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个结点被访问一次,且仅被访问一次。

Q:二叉树有几种遍历方法?

A:二叉树的遍历方法可以有很多种,如果限制了从左到右的习惯方式,那么主要分为以下四种:先序遍历,中序遍历,后序遍历,层序遍历。

前序遍历

Q:什么是先序遍历

A:先序遍历就是先访问树的根节点,再访问树的左子节点,再访问右子节点。可以想象为,从一棵二叉树根节点为起点,沿着二叉树外沿,逆时针走一圈回到根节点,路上遇到的元素顺序,就是先序遍历的结果。

如图:遍历的顺序为 ABDGHCEIF

操作定义

若二叉树为空,则空操作返回,否则:

代码演示

void PreOrderTraversal(BiTree BT)
{
    if( BT != NULL ) 
    {
        printf(“%d\n”, BT->Data);        //对节点的数据进行打印          
        PreOrderTraversal(BT->Left);     //访问左子树
        PreOrderTraversal(BT->Right);    //访问右子树
    }
}

中序遍历

Q:什么是中序遍历

A:中序遍历就是访问完所有左子数后再访问根节点,最后访问右子树,即左子树-根节点-右子树。中序遍历可以看成,二叉树每个节点,垂直方向投影下来,然后从左往右数,得出的结果便是中序遍历的结果。

如图:遍历的顺序为GDHBAECF

操作定义

若二叉树为空,则空操作返回,否则:

代码演示

void InOrderTraversal(BiTree BT)
{
    if(BT)
    {
        InOrderTraversal(BT->Left);
        printf("%d\n", BT->Data);
        InOrderTraversal(BT->Right);
    }
}

后序遍历

Q:什么后序遍历

A:后序遍历就是先访问左子树和右子树,最后访问节点,即左子树-右子树-根节点。后序遍历可以看成围着树的外围绕一圈,若下面只有一个结点就摘下来,得出的结果便是后序遍历的结果。

如图:遍历的顺序为GHDBIEFCA

操作定义

若二叉树为空,则空操作返回,否则:

代码演示

void PostOrderTraversal(BiTree BT)
{
    if (BT)
    {
        PostOrderTraversal(BT->Left);
        PostOrderTraversal(BT->Right);
        printf("%d\n", BT->Data);
    }
}

层序遍历

Q:什么层序遍历

A:层次遍历就是从根节点开始,一层一层,从上到下,每层从左到右,依次取值。

如图:遍历的顺序为ABCDEFGHL

代码演示

void LevelOrder(BiTree T){
	InitQueue(Q);				//初始化辅助队列
	BiTree p;
	EnQueue(Q,T);				//将根结点入队
	while(!IsEmpty(Q))
	{							//队列不空则循环
		DeQueue(Q,p);			//队头结点出队
		visit(p);				//访问出队结点
		if(p->1child!=NULL)
			EnQueue(Q,p->lchild);//左子树不空,则左子树根结点入队
		if(p->rchild!=NULL)
			EnQueue(Q,p->rchild);//右子树不空,则右子树根结点入队
	}
}

您可能感兴趣的文章:

相关文章