时间:2022-06-08 09:19:42 | 栏目:C代码 | 点击:次
AVX2是SIMD(单指令多数据流)指令集,支持在一个指令周期内同时对256位内存进行操作。包含乘法,加法,位运算等功能。下附Intel官网使用文档。
我们本次要用到的指令有 __m256i _mm256_add_epi32(__m256i a, __m256i b), __m256i _mm256_add_epi64等
它们可以一次取256位的内存,并按32/64位一个整形进行加法运算。下附官网描述。
__m256i _mm256_add_epi64 (__m256i a, __m256i b)
#include <immintrin.h>
Instruction: vpaddq ymm, ymm, ymm
CPUID Flags: AVX2
Add packed 64-bit integers in a and b, and store the results in dst.
FOR j := 0 to 3 i := j*64 dst[i+63:i] := a[i+63:i] + b[i+63:i] ENDFOR dst[MAX:256] := 0
Performance
Architecture | Latency | Throughput (CPI) |
---|---|---|
Icelake | 1 | 0.33 |
Skylake | 1 | 0.33 |
Broadwell | 1 | 0.5 |
Haswell | 1 | 0.5 |
为了比较结果,我们生成从1到N的等差数列。这里利用模版兼容不同数据类型。由于AVX2指令集一次要操作多个数据,为了防止访存越界,我们将大小扩展到256的整数倍位比特,也就是32字节的整数倍。
uint64_t lowbit(uint64_t x) { return x & (-x); } uint64_t extTo2Power(uint64_t n, int i)//arraysize datasize { while(lowbit(n) < i) n += lowbit(n); return n; }
template <typename T> T* getArray(uint64_t size) { uint64_t ExSize = extTo2Power(size, 32/sizeof(T)); T* arr = new T[ExSize]; for (uint64_t i = 0; i < size; i++) arr[i] = i+1; for (uint64_t i = size; i < ExSize; i++) arr[i] = 0; return arr; }
为了比较性能差异,我们先实现一份普通的数组求和。这里也使用模版。
template <typename T> T simpleSum(T* arr, uint64_t size) { T sum = 0; for (uint64_t i = 0; i < size; i++) sum += arr[i]; return sum; }
这里我们预开一个avx2的整形变量,每次从数组中取8个32位整形,加到这个变量上,最后在对这8个32位整形求和。
int32_t avx2Sum(int32_t* arr, uint64_t size) { int32_t sum[8] = {0}; __m256i sum256 = _mm256_setzero_si256(); __m256i load256 = _mm256_setzero_si256(); for (uint64_t i = 0; i < size; i += 8) { load256 = _mm256_loadu_si256((__m256i*)&arr[i]); sum256 = _mm256_add_epi32(sum256, load256); } sum256 = _mm256_hadd_epi32(sum256, sum256); sum256 = _mm256_hadd_epi32(sum256, sum256); _mm256_storeu_si256((__m256i*)sum, sum256); sum[0] += sum[4]; return sum[0]; }
这里的hadd是横向加法,具体实现类似下图,可以帮我们实现数组内求和:
int64_t avx2Sum(int64_t* arr, uint64_t size) { int64_t sum[4] = {0}; __m256i sum256 = _mm256_setzero_si256(); __m256i load256 = _mm256_setzero_si256(); for (uint64_t i = 0; i < size; i += 4) { load256 = _mm256_loadu_si256((__m256i*)&arr[i]); sum256 = _mm256_add_epi64(sum256, load256); } _mm256_storeu_si256((__m256i*)sum, sum256); sum[0] += sum[1] + sum[2] + sum[3]; return sum[0]; }
Device | Description |
---|---|
CPU | Intel Core i9-9880H 8-core 2.3GHz |
Memory | DDR4-2400MHz Dual-Channel 32GB |
complier | Apple Clang-1300.0.29.30 |
利用chrono库获取系统时钟计算运行时间,精确到毫秒级
uint64_t getTime() { uint64_t timems = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()).count(); return timems; }
对1到1e9求和,答案应该为500000000500000000, 分别测试32位整形和64位整形。
uint64_t N = 1e9; // compare the performance of normal add and avx2 add uint64_t start, end; // test int32_t cout << "compare int32_t sum: " << endl; int32_t* arr = getArray<int32_t>(N); start = getTime(); int32_t sum = simpleSum(arr, N); end = getTime(); cout << "int32_t simpleSum time: " << end - start << endl; cout << "int32_t simpleSum sum: " << sum << endl; start = getTime(); sum = avx2Sum(arr, N); end = getTime(); cout << "int32_t avx2Sum time: " << end - start << endl; cout << "int32_t avx2Sum sum: " << sum << endl; delete[] arr; cout << endl << endl; // test int64_t cout << "compare int64_t sum: " << endl; int64_t* arr2 = getArray<int64_t>(N); start = getTime(); int64_t sum2 = simpleSum(arr2, N); end = getTime(); cout << "int64_t simpleSum time: " << end - start << endl; cout << "int64_t simpleSum sum: " << sum2 << endl; start = getTime(); sum2 = avx2Sum(arr2, N); end = getTime(); cout << "int64_t avx2Sum time: " << end - start << endl; cout << "int64_t avx2Sum sum: " << sum2 << endl; delete[] arr2; cout << endl << endl;
测试命令
g++ -mavx2 avx_big_integer.cpp ./a.out
测试结果
方法 | 耗时(ms) |
---|---|
AVX2加法 32位 | 537 |
普通加法 32位 | 1661 |
AVX2加法 64位 | 1094 |
普通加法 64位 | 1957 |
可以看出,avx2在32位加法上大致能快3倍,在64位加法上只能快2倍,因为64位下每次只能操作4个变量,而32位能操作8个。
测试命令
现在我们再开启O2编译优化试一试:
g++ -O2 -mavx2 avx_big_integer.cpp ./a.out
测试结果
方法 | 耗时(ms) |
---|---|
AVX2加法 32位 | 269 |
普通加法 32位 | 342 |
AVX2加法 64位 | 516 |
普通加法 64位 | 750 |
发现开启O2后相对的性能提升减小很多。
使用AVX2进行指令层面的并行加法,确实提高了运算效率。
但是,这里可能有朋友会有疑问,我们明明是每次同时处理了4/8个整形,为什么加速比达不到4/8倍呢?
个人推断原因: