时间:2022-04-26 09:08:02 | 栏目:Python代码 | 点击:次
我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有有时保留在中间层。
此外,当检测较底层的特征时(例如之前讨论的边缘),我们通常希望这些特征保持某种程度上的平移不变性。例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[i, j+1],则新图像Z的输出可能大不相同。而在现实中,随着拍摄角度的移动,任何物体几乎不可能发生在同一像素上。即使用三脚架拍摄一个静止的物体,由于快门的移动而引起的相机振动,可能会使所有物体左右移动一个像素(除了高端相机配备了特殊功能来解决这个问题)。
本节将介绍池化(pooling)层,它具有双重目的:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。
与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为池化窗口)遍历的每个位置计算一个输出。然而,不同域卷积层的输入与卷积核之间的互相关计算,汇聚层不包含参数。相反,池运算符是确定性的,我们通常计算池化窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)。
在这两种情况下,与互相关运算符一样,池化窗口从输入张量的左上角开始,从左到右、从上到下的在输入张量内移动。
和先前一样,我们可以通过填充和步幅以获得所需的输出形状。
在处理多通道输入数据时,汇聚层在每个输入通道上单独运算,而不是像卷积层一样在通道上对输入进行汇总。这意味着汇聚层的输出通道数与输入通道数相同。