当前位置:主页 > 软件编程 > C代码 >

C++ OpenCV实战之车道检测

时间:2022-04-26 09:08:00 | 栏目:C代码 | 点击:

前言

本文将使用OpenCV C++ 进行车道检测。

一、获取车道ROI区域

原图如图所示。

使用下面代码段获取ROI区域。该ROI区域点集根据图像特征自己设定。通过fillPoly填充ROI区域,最终通过copyTo在原图中扣出ROI。

void GetROI(Mat src, Mat &image)
{
    Mat mask = Mat::zeros(src.size(), src.type());

    int width = src.cols;
    int height = src.rows;

    //获取车道ROI区域,只对该部分进行处理
    vector<Point>pts;
    Point ptA((width / 8) * 2, (height / 20) * 19);
    Point ptB((width / 8) * 2, (height / 8) * 7);
    Point ptC((width / 10) * 4, (height / 5) * 3);
    Point ptD((width / 10) * 5, (height / 5) * 3);
    Point ptE((width / 8) * 7, (height / 8) * 7);
    Point ptF((width / 8) * 7, (height / 20) * 19);
    pts = { ptA ,ptB,ptC,ptD,ptE, ptF };

    fillPoly(mask, pts, Scalar::all(255));
    src.copyTo(image, mask);

}

mask图像如图所示。有了mask图像,我们就可以更好的进行后续处理,以检测车道线。

二、车道检测

1.灰度、阈值

	Mat gray;
	cvtColor(image, gray, COLOR_BGR2GRAY);

	Mat thresh;
	threshold(gray, thresh, 180, 255, THRESH_BINARY);
	imshow("thresh", thresh);

经过灰度、阈值后的图像如下图所示。

2.获取非零像素点

我们将图像分为两半。左半边获取左侧车道轮廓点;右半边获取右侧车道轮廓点。

	vector<Point>left_line;
	vector<Point>right_line;

	for (int i = 0; i < thresh.cols / 2; i++)
	{
		for (int j = 0; j < thresh.rows; j++)
		{
			if (thresh.at<uchar>(j, i) == 255)
			{
				left_line.push_back(Point(i, j));

			}
		}
	}

	for (int i = thresh.cols / 2; i < thresh.cols; i++)
	{
		for (int j = 0; j < thresh.rows; j++)
		{
			if (thresh.at<uchar>(j, i) == 255)
			{
				right_line.push_back(Point(i, j));
			}
		}
	}

3.绘制车道线

我们将从left_line、right_line容器中各拿出首尾两个点作为车道线的起始点。

注意:这里要加一个if判断语句,否则当容器为空时(未检测到车道线),容器会溢出。

	if (left_line.size() > 0 && right_line.size() > 0)
	{
		Point B_L = (left_line[0]);
		Point T_L = (left_line[left_line.size() - 1]);
		Point T_R = (right_line[0]);
		Point B_R = (right_line[right_line.size() - 1]);

		circle(src, B_L, 10, Scalar(0, 0, 255), -1);
		circle(src, T_L, 10, Scalar(0, 255, 0), -1);
		circle(src, T_R, 10, Scalar(255, 0, 0), -1);
		circle(src, B_R, 10, Scalar(0, 255, 255), -1);

		line(src, Point(B_L), Point(T_L), Scalar(0, 255, 0), 10);
		line(src, Point(T_R), Point(B_R), Scalar(0, 255, 0), 10);

		vector<Point>pts;
		pts = { B_L ,T_L ,T_R ,B_R };
		fillPoly(src, pts, Scalar(133, 230, 238));
	}

最终效果如图所示。

总结

本文使用OpenCV C++进行车道检测,关键步骤有以下几点。

1、要根据车道所在位置扣出一个ROI区域,这样方便我们后续的阈值操作。

2、根据阈值图像获取左右车道的轮廓点。这里的阈值处理很重要,直接会影响最后的效果。本文做实时视频处理时,也会因为阈值问题导致最后的效果不是特别好。

3、根据获取到的各车道轮廓点拿出首尾Point就可以绘制车道线以及车道区域了。

您可能感兴趣的文章:

相关文章