当前位置:主页 > 软件编程 > Python代码 >

Python+matplotlib实现绘制等高线图示例详解

时间:2022-03-12 08:49:01 | 栏目:Python代码 | 点击:

前言

我们在往期对matplotlib.pyplot()方法学习,到现在我们已经会绘制折线图、柱状图、散点等常规的图表啦(往期的内容如下,大家可以方便查看往期内容)

Python matplotlib底层原理解析

Python利用 matplotlib 绘制直方图

Python用 matplotlib 绘制柱状图

python 用matplotlib绘制折线图详情

在matplotlib.pyplot 中除了可以绘制常规图表如折线、柱状、散点等,还可以绘制常用在地理上的平面展示地型的等高线图

本期,我们将详细学习matplotlib 绘制等高线图相关属性的学习,let's go~

1. 等高线图概述

什么是等高线图?

等高线图常用场景

绘制等高线图步骤

  1. 导入matplotlib.pyplot模块
  2. 准备数据,可以使用numpy/pandas整理数据
  3. 调用pyplot.contour()或者pyplot.contourf()绘制等高线

案例展示

等高线图绘制需要借助很多高中所学的三角函数、指数函数等公式,我们本期案例使用等高线方法汇总圆

案例数据准备

np.arrage()准备一系列连续的数据

np.meshgrid()将数据转换成矩阵

import numpy as np
# 定义一组连续的数据

x_value = np.arange(-5,5,0.1)
y_value = np.arange(-5,5,0.1)

# 转换成矩阵数据
x,y = np.meshgrid(x_value,y_value)

绘制等高线

import matplotlib.pyplot as plt
plt.contour(x,y,z)
 
plt.title("Display Contour")
plt.xlabel("x(m)")
plt.ylabel("y(m)")
 
plt.show()
 
plt.show()

2. 等高线图属性

设置等高线颜色

关键字:colors

取值范围:

设置等高线透明度

关键字:alpha

默认为1

取值范围为:0~1

设置等高线颜色级别

关键字:cmap

colors和cmap两个关键字不能同时提供

取值为:注册的颜色表明

设置等高线宽度

关键字:linewidths

默认为等高线宽度为1.5

取值可以float类型或者列表

设置等高线样式

关键字:linestyles

默认值为:solid

取值可选:{None, 'solid', 'dashed', 'dashdot', 'dotted'}

linestyles为None且线条为单色时,负轮廓的线条会设置成dashed

我们对上一节的等高线图添加一些属性

线条为红色,线条宽度逐渐增大,线条样式为dashed,透明度设置为0.5

```python
plt.contour(x,y,z,colors="r",
linestyles="dashed",
linewidths=np.arange(0.5,4,0.5),alpha=0.5)
```

传入colors列表

plt.contour(x,y,z,
colors=('r','green','blue',(1,1,0),"#afeeee","0.5"),
linewidths=np.arange(0.5,4,0.5))

为等高线图,设置cmap为红色系

z = np.exp(-x**2-y**2)
z1 = np.exp(-(x-1)**2-(y-1)**2)
Z = (z-z1)*2
 
plt.contour(x,y,Z,
cmap='afmhot_r',
linewidths=np.arange(0.5,4,0.5))

3. 显示轮廓标签

我们查看等高线图时,轮廓标签会辅助我们更好的查看图表。添加轮廓标签,我们需要借助clabe

x_value = np.arange(-3,3,0.025)
y_value = np.arange(-3,3,0.025)
 
x,y = np.meshgrid(x_value,y_value)
 
z = (1-x**2+y**5)*np.exp(-x**2-y**2)
 
cs = plt.contour(x,y,z,cmap="Blues_r",linewidths=np.arange(0.5,4,0.5))
 
plt.clabel(cs,fontsize=9,inline=True)

4. 填充颜色

通常在等高线图中,不同区域填充不一样的颜色,帮助我们查看图表时更好地理解

使用pyplot.contourf()对比同区域轮廓进行填充颜色

z = (1-x**2+y**5)*np.exp(-x**2-y**2)
 
cs = plt.contour(x,y,z,10,colors="b",linewidths=0.5)
 
plt.clabel(cs,fontsize=12,inline=True)
 
plt.contourf(x,y,z,10,cmap="Blues_r",alpha=0.75)

5. 添加颜色条说明

我们可以借助pyplot.colorbar()方法来添加颜色条说明

z = (x**2+y**5)*np.exp(-x**2-y**2)
z1 = np.exp(-(x-1)**2-(y-1)**2)
Z = (z-z1)*2
 
cs = plt.contour(x,y,Z,10,colors="black",linewidths=0.5)
 
plt.clabel(cs,fontsize=12,inline=True)
 
plt.contourf(x,y,Z,10,cmap="afmhot_r",alpha=0.5)
 
plt.colorbar(shrink=0.8)

总结

本期对matplotlib.pyplot 绘制等高线方法contour和contourf相关属性的学习。在绘制等高线图时,我们需要对三角函数、指数函数、正余弦函数等知识有一点了解,才能绘制出想要的图表 

您可能感兴趣的文章:

相关文章