当前位置:主页 > 软件编程 > Python代码 >

python数据结构算法分析

时间:2022-03-03 09:47:21 | 栏目:Python代码 | 点击:

前文学习:

python数据类型: python数据结构:数据类型.
python的输入输出: python数据结构输入输出及控制和异常.
python面向对象: python数据结构面向对象.

今天我们来学习的内容是面试题中都避免不小了的问题,就是算法分析了,什么是算法分析,算法分析是用来分析一个算法的好坏的,大家完成一件事情写不一样的算法,就需要算法分析来评判算法的好坏,最常见的就是程序的复杂的O(n)。

1.算法分析的定义

有这样一个问题:当两个看上去不同的程序 解决同一个问题时,会有优劣之分么?答案是肯定的。算法分析关心的是基于所使用的计算资源比较算法。我们说甲算法比乙算法好,依据是甲算法有更高的资源利用率或使用更少的资源。从这个角度来看,上面两个函数其实差不多,它们本质上都利用同一个算法解决累加问题。

计算资源究竟指什么?思考这个问题很重要。有两种思考方式。

举个例子:我们需要求解前n个数之和,通过计算所需时间来评判效率好坏。(这里使用time函数,并计算5次来看看大致需要多少时间)

第一种方法:循环方案

import time
def sumOfN2(n): 
        start=time.time()
        thesum=0
        for i in range(1,n+1):
            thesum=thesum+i
        end=time.time()
        return thesum,end-start
#循环5次        
for i in range(5):
     print("Sum is %d required %10.7f seconds" % sumOfN2(10000)) 

结果如下:

第二种方法:公式方法

#直接利用求和公式
def sumOfN3(n): 
        start=time.time()
        thesum=(1+n)*n/2
        end=time.time()
        return thesum,end-start
for i in range(5):
     print("Sum is %d required %10.7f seconds" % sumOfN3(10000)) 

结果如下:

直觉上,循环方案看上去工作量更大,因为有些步骤重复。这好像是耗时更久的原因。而且,循环方案的耗时会随着 n 一起增长。然而,这里有个问题。如果在另一台计算机上运行这个函数,或用另一种编程语言来实现,很可能会得到不同的结果。如果计算机再旧些,sumOfN3 的执行时间甚至更长。
我们需要更好的方式来描述算法的执行时间。基准测试计算的是执行算法的实际时间。 这不是一个有用的指标,因为它依赖于特定的计算机、程序、时间、编译器与编程语言。我们希 望找到一个独立于程序或计算机的指标。这样的指标在评价算法方面会更有用,可以用来比较不同实现下的算法。

2. 大O记法

这里为了让大家知道一些函数的增长速度,我决定将一些函数的列举出来。

例:计算如下程序的步骤数,和数量级大O

a = 5
b = 6
c = 10
for i in range(n): 
    for j in range(n): 
        x = i * i 
        y = j * j 
        z = i * j 
for k in range(n): 
    w = a * k + 45  
    v = b * b
d = 33

这段程序的赋值次数为:

大家可以自己算一下。

3. 不同算法的大O记法

这里我们采用不同的算法实现一个经典的异序词检测问,所谓异序词,就是组成单词的字母一样,只是顺序不同,例如heartearthpythontyphon。为了简化问题,我们假设要检验的两个单词字符串的长度已经一样长。

3.1 清点法

该方法主要是清点第 1 个字符串的每个字符,看看它们是否都出现在第 2 个字符串中。如果是,那么两个字符串必然是异序词。清点是通过用 Python 中的特殊值 None 取代字符来实现的。但是,因为 Python 中的字符串是不可修改的,所以先要将第 2 个字符串转换成列表。在字符列表中检查第 1 个字符串中的每个字符,如果找到了,就替换掉。

def anagramSolution1(s1, s2):
    alist = list(s2)
    pos1=0
    stillOK = True
    while pos1 < len(s1) and stillOK:
          pos2 = 0
          found = False
          while pos2 < len(alist) and not found:
                if s1[pos1] == alist[pos2]:
                   found = True
                else:
                   pos2 = pos2 + 1
          if found:
                alist[pos2] = None
          else:
                stillOK = False
          pos1 = pos1 + 1
    return stillOK

来分析这个算法。注意,对于 s1 中的 n 个字符,检查每一个时都要遍历 s2 中的 n 个字符。 要匹配 s1 中的一个字符,列表中的 n 个位置都要被访问一次。因此,访问次数就成了从 1 到 n 的整数之和。这可以用以下公式来表示。

因此,该方法的时间复杂度是

3.2 排序法

尽管 s1 与 s2 是不同的字符串,但只要由相同的字符构成,它们就是异序词。基于这一点, 可以采用另一个方案。如果按照字母表顺序给字符排序,异序词得到的结果将是同一个字符串。

def anagramSolution2(s1, s2):
       alist1 = list(s1)
       alist2 = list(s2)
       alist1.sort()
       alist2.sort()
       pos=0
       matches = True
       while pos < len(s1) and matches:
             if alist1[pos] == alist2[pos]:
                pos = pos + 1
             else:
                matches = False
      return matches

乍看之下,你可能会认为这个算法的时间复杂度是O ( n ) O(n)O(n),因为在排序之后只需要遍历一次就可以比较 n 个字符。但是,调用两次 sort 方法不是没有代价。我们在后面会看到,排序的时 间复杂度基本上是O ( n 2 ) O(n2 )O(n2)或 O ( n l o g n ) O(nlogn)O(nlogn) ,所以排序操作起主导作用。也就是说,该算法和排序过程的数量级相同。

3.3 蛮力法

用蛮力解决问题的方法基本上就是穷尽所有的可能。就异序词检测问题而言,可以用 s1 中 的字符生成所有可能的字符串,看看 s2 是否在其中。但这个方法有个难处。用 s1 中的字符生 成所有可能的字符串时,第 1 个字符有 n 种可能,第 2 个字符有 n-1 种可能,第 3 个字符有 n-2 种可能,依此类推。字符串的总数是n ? ( n ? 1 ) ? ( n ? 2 ) ? . . . . . . ? 3 ? 2 ? 1 n*(n-1)*(n-2)*......*3*2*1n?(n?1)?(n?2)?......?3?2?1,即为n ! n!n!也许有些字符串会重复,但程序无法预见,所以肯定会生成n ! n!n!个字符串。
当 n 较大时, n! 增长得比2n还要快。实际上,如果 s1 有20个字符,那么字符串的个数就 是 20!= 2432902008176640000 。假设每秒处理一个,处理完整个列表要花 77146816596 年。 这可不是个好方案。

3.4 计数法

最后一个方案基于这样一个事实:两个异序词有同样数目的 a、同样数目的 b、同样数目的 c,等等。要判断两个字符串是否为异序词,先数一下每个字符出现的次数。因为字符可能有 26 种,所以使用 26 个计数器,对应每个字符。每遇到一个字符,就将对应的计数器加 1。最后, 如果两个计数器列表相同,那么两个字符串肯定是异序词。

def anagramSolution4(s1, s2):
       c1=[0]*26
       c2=[0]*26

       for i in range(len(s1)):
           pos = ord(s1[i]) - ord('a')
           c1[pos] = c1[pos] + 1

       for i in range(len(s2)):
          pos = ord(s2[i]) - ord('a')
          c2[pos] = c2[pos] + 1
       j=0
       stillOK = True
       while j < 26 and stillOK:
             if c1[j] == c2[j]:
                j=j+1
             else:
                stillOK = False
       return stillOK

这个方案也有循环。但不同于方案 1,这个方案的循环没有嵌套。前两个计数循环都是 n 阶 的。第 3 个循环比较两个列表,由于可能有 26 种字符,因此会循环 26 次。全部加起来,得到总步骤数 T (n) =2n - 26 ,即 O(n) 。我们找到了解决异序词检测问题的线性阶算法。

4. 列表和字典操作的复杂度

4.1 列表

4.2 字典

您可能感兴趣的文章:

相关文章