当前位置:主页 > 软件编程 > Python代码 >

tensorflow-gpu2.3版本安装步骤

时间:2022-02-22 10:57:07 | 栏目:Python代码 | 点击:

一、硬件要求

首先,TensorFlow-gpu不同于CPU版本的地方在于,GPU版本必须有GPU硬件的支撑。TensorFlow对NVIDIA显卡的支持较为完备。
对于NVIDIA显卡,要求对于其算力不低于3.5。算力参考:

http://developer.nvidia.com/cuda-gpus

驱动版本注意:NVIDIA驱动程序需要418.x或者更高的版本。可以在命令行中输入

nvidia-smi

命令查看驱动版本。

在这里插入图片描述

我们可以看到我们的驱动程序满足上述条件。于是我们可以开始正式安装tensorflow-gpu了。

TensorFlow-gpu版本有两个重要的依赖库,分别是CUDA和cudnn。下面我首先来介绍CUDA的安装方法。
对于tensorflow-gpu2.3.0版本来说,对于CUDA的版本需要是10.1,cudnn版本号需要不小于7.6

二、 CUDA和cudnn的安装

1、查看本机的CUDA驱动适配版本

桌面右键打开英伟达控制面板,点击帮助->系统信息->组件

在这里插入图片描述

可以看到本机支持的是CUDA 10.2 版本,表示是不支持更高版本的。如果你升级了驱动,可能会支持更高版本,也可能不会提升。

所以就必须安装 10.2 及以下的版本,即我们可以正常安装CUDA10.1版本。

2、下载CUDA和cuDNN

CUDA10.1下载页面:

https://developer.nvidia.com/cuda-10.1-download-archive-base

cuDNN下载页面:

https://developer.nvidia.com/rdp/cudnn-archive

记得一定要下载与你所下载的CUDA版本相匹配的版本,这里我下载的是

在这里插入图片描述

3、安装CUDA和cudnn

找到你下载的CUDA,无脑点击下一步安装就行了。当然如果你想自定义的话要记住你选择的安装路径。本人推荐使用默认的安装地址。

CUDA安装完成后,打开命令行窗口,执行nvcc -V ,成功的话会返回cuda版本号。

在这里插入图片描述

解压cuDNN压缩包,可以看到bin、include、lib目录

在这里插入图片描述

打开 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA,这个是你CUDA安装的默认地址,如果自定义了安装路径,请打开你自定义的路径。

在这里插入图片描述

找到你安装的版本目录,打开,找到bin、include、lib目录,将cuDNN压缩包内对应的文件复制到bin、include、lib目录。

注意:是复制文件到bin、include、lib目录,不是复制目录。

4、添加环境变量

你需要在系统环境变量的Path项下添加几个路径

在这里插入图片描述

点击:新建
复制粘贴下列两个路径即可

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp

最后点击确定即可

注意:选择你安装的路径,我使用的是默认的安装路径,所以是上面两个路径,如果是自定义的路径,请填写自己选择的路径。

5、检查安装结果

打开命令行窗口,在命令行窗口输入以下命令

cd C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite
//然后输入下一行命令
.\bandwidthTest.exe

若出现以下信息,说明CUDA已经cuDNN安装成功

在这里插入图片描述

三、TensorFlow-gpu 2.3.0版本的安装

打开以管理员身份命令行窗口,执行以下命令

pip install -i https://pypi.douban.com/simple/ tensorflow-gpu==2.3.0//使用豆瓣源来安装

注意:一定要以管理员身份打开命令行窗口,否则会出现拒绝访问的错误!!!

等待安装完成后,输入pip list查看自己安装的tensorflow版本。

最后,编辑代码

import tensorflow as tf
print(tf.test.is_gpu_available())

若输出true则表示,安装成功。

在这里插入图片描述

四、写在最后

在文中,本人并未重新创建一个环境安装tensorflow2.3.0,由于tensorflow1.x版本与2.x版本差距较大,网上代码使用的版本有时是1.x有时是2.x,所以本人建议,大家再创建一个环境,参照以上步骤安装一下tensorflow1.x的版本。以备不时之需。

您可能感兴趣的文章:

相关文章