时间:2022-01-24 09:57:15 | 栏目:C代码 | 点击:次
约瑟夫问题:n个人围成一圈,初始编号从1~n排列,从约定编号为x的人开始报数,数到第m个人出圈,接着又从1开始报数,报到第m个数的人又退出圈,以此类推,最后圈内只剩下一个人,这个人就是赢家,求出赢家的编号。
是不是有点点复杂,其实该问题归结为模拟类型的算法题,根据题目要求模拟即可。
我说,一行代码解决约瑟夫问题!
???我去
别着急,我们一步一步学习
在第一次遇到这个题的时候,我是用数组做的,我猜绝大多数人也都知道怎么做。方法是这样的:
用一个数组来存放 1,2,3 ... n 这 n 个编号,如图(这里我们假设n = 6, m = 3)
然后不停着遍历数组,对于被选中的编号,我们就做一个标记,例如编号 arr[2] = 3 被选中了,那么我们可以做一个标记,例如让 arr[2] = -1,来表示 arr[2] 存放的编号已经出局的了。
然后就按照这种方法,不停着遍历数组,不停着做标记,直到数组中只有一个元素是非 -1 的,这样,剩下的那个元素就是我们要找的元素了。我演示一下吧:
这种方法简单吗?思路简单,但是编码却没那么简单,临界条件特别多,每次遍历到数组最后一个元素的时候,还得重新设置下标为 0,并且遍历的时候还得判断该元素时候是否是 -1。用这种数组的方式做,千万不要觉得很简单,编码这个过程还是挺考验人的。
这种做法的时间复杂度是 O(n * m), 空间复杂度是 O(n);
下面给出数组方法的参考代码:
#include<algorithm> #include<iostream> using namespace std; int main(){ int a[1001]={0}; //初始化化数组作为环 int n,m;//n代表总的人数,m代表报数到几退出 cin>>n>>m; int count=0;//记录退出的个数 int k=-1;//这里假定开始为第一个人,下标为0,编号为1,如需从编号x开始,则k=x-2 while(count<n-1){ //总共需要退出n-1个人 int i=0;//记录当前报数编号 while(i<m){ k=(k+1)%n; //循环处理下标 if(a[k]==0){ i++; if(i==m){ a[k]=-1; count++; } } } } for(int i=0;i<n;i++){ if(a[i]==0){ printf("%d\n",i+1); break; } } return 0; }
学过链表的人,估计都会用链表来处理约瑟夫环问题,用链表来处理其实和上面处理的思路差不多,只是用链表来处理的时候,对于被选中的编号,不再是做标记,而是直接移除,因为从链表移除一个元素的时间复杂度很低,为 O(1)。当然,上面数组的方法你也可以采用移除的方式,不过数组移除的时间复杂度为 O(n)。所以采用链表的解决方法如下:
1、先创建一个环形链表来存放元素:
2、然后一边遍历链表一遍删除,直到链表只剩下一个节点,我这里就不全部演示了
感兴趣的友友可以自己实现以下代码,这里就不放了
下面我们来看看,是如何一行代码实现约瑟夫问题!
其实这道题还可以用递归来解决,递归是思路是每次我们删除了某一个人之后,我们就对这些人重新编号,然后我们的难点就是找出删除前和删除后编号的映射关系。
我们定义递归函数 f(n,m) 的返回结果是存活士兵的编号,显然当 n = 1 时,f(n, m) = 1。假如我们能够找出 f(n,m) 和 f(n-1,m) 之间的关系的话,我们就可以用递归的方式来解决了。我们假设人员数为 n, 报数到 m 的人就自杀。则刚开始的编号为
… 1 ... m - 2
m - 1
m
m + 1
m + 2 ... n …
进行了一次删除之后,删除了编号为 m 的节点。删除之后,就只剩下 n - 1 个节点了,删除前和删除之后的编号转换关系为:
删除前 --- 删除后
… --- …
m - 2 --- n - 2
m - 1 --- n - 1
m ---- 无(因为编号被删除了)
m + 1 --- 1(因为下次就从这里报数了)
m + 2 ---- 2
… ---- …
新的环中只有 n - 1 个节点。且删除前编号为 m + 1, m + 2, m + 3 的节点成了删除后编号为 1, 2, 3 的节点。
假设 old 为删除之前的节点编号, new 为删除了一个节点之后的编号,则 old 与 new 之间的关系为 old = (new + m - 1) % n + 1。
注:有些人可能会疑惑为什么不是 old = (new + m ) % n 呢?主要是因为编号是从 1 开始的,而不是从 0 开始的。如果 new + m == n的话,会导致最后的计算结果为 old = 0。所以 old = (new + m - 1) % n + 1. 这样,我们就得出 f(n, m) 与 f(n - 1, m)之间的关系了,而 f(1, m) = 1.所以我们可以采用递归的方式来做。
代码如下:
int f(int n, int m){ return n == 1 ? n : (f(n - 1, m) + m - 1) % n + 1; }
卧槽,以后有人让你手写约瑟夫问题,你就扔这一行代码给它。