当前位置:主页 > 数据库 > Mysql >

MySQL提取Json内部字段转储为数字

时间:2022-01-07 10:33:03 | 栏目:Mysql | 点击:

这只是一次简单数据迁移的统计,数据量不大,麻烦的是一些中间步骤处理和思量。

没有 SQL 优化、索引优化的内容,大家轻喷。

背景

用户眼科属性表记录数大概 986w,目的是把大概 29w 记录的属性值(json 格式)的其中八个字段解析为数字,转储为统计表的记录,用于图表分析。

以下结构、数据都大部分我瞎诌的,不可当真

用户眼科属性表结构如下

CREATE TABLE `property` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `ownerId` int(11) NOT NULL COMMENT '记录ID或者模板ID',
  `ownerType` tinyint(4) NOT NULL COMMENT '类型。0:记录 1:模板',
  `recorderId` bigint(20) NOT NULL DEFAULT '0' COMMENT '记录者ID',
  `userId` bigint(20) NOT NULL DEFAULT '0' COMMENT '用户ID',
  `roleId` bigint(20) NOT NULL DEFAULT '0' COMMENT '角色ID',
  `type` tinyint(4) NOT NULL COMMENT '字段类型。0:文本 1:备选项 2:时间 3:图片 4:ICD10 9:新图片',
  `name` varchar(128) NOT NULL DEFAULT '' COMMENT '字段名称',
  `value` mediumtext NOT NULL COMMENT '字段值',
  PRIMARY KEY (`id`),
  UNIQUE KEY `idxOwnerIdOwnerTypeNameType` (`ownerType`,`ownerId`,`name`,`type`) USING BTREE,
  KEY `idxUserIdRoleIdRecorderIdName` (`userId`,`roleId`,`recorderId`,`name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='属性';

问题分析

1、属性值是 Json 格式的,需要使用 Json 操作函数处理

因为属性值是 Json 格式的,如下。较大的一个 Json,但是只需要其中 8 个字段值,提取出来分门别类归为不同统计指标下。

{   ......
    "sight": {
        "nakedEye": {
            "left": "0.9",
            "right": "0.6"
        },
        "correction": {
            "left": "1",
            "right": "1"
        }
    },
    ......
    "axialLength": {
        "left": "21",
        "right": "12"
    },
    "korneaRadius": {
        "left": "34",
        "right": "33"
    },
    ......
}

所以,需要用到 Json 操作函数:json_extract(value,'$.key1.key2')。

但是需要注意的是这个函数提取的值是带""。比如对上述记录执行json_extract(value,'$.sight.nakedEye.left')的结果是"22";也可能字段值是空字符串,那结果就是""。

所以,需要使用 replace函数把结果中的 "" 删除掉,最后提取字段的表达式就是:replace(json_extract(value,'$.sight.nakedEye.left'),'"','')。

如果字段不存在的话,结果就是 NULL;无论是外层 sight 不存在,或是内层 left 不存在。

2、字段内容不规范,乱七八糟

理想下,填写的都是规范数字,那经过上面那一步就可以提取完直接导入新表。

但是,现实很残酷,填的东西那叫一个乱七八糟。比如:

没办法,找产品和业务对情况,好在不多,就 4000 多条,大致扫一下心里有数。得出以下几条解决方案:

具体怎么做呢?

第一步:排除正常的数字数据和空数据

WHERE `nakedEyeLeft` REGEXP '[^0-9.]' = 1 // 这个已经可以排除 null 了
 AND `nakedEyeLeft` != ''

第二步:如果不包含数字,将其设置 NULL 或空字符串

SET nakedEyeLeft = IF(nakedEyeLeft NOT regexp '[0-9]', '', nakedEyeLeft)

第三步:提取数字开头的数据的首个数值

SET nakedEyeLeft = IF((nakedEyeLeft + 0 = 0), nakedEyeLeft, nakedEyeLeft + 0)

结合起来就是

SET nakedEyeLeft = IF(nakedEyeLeft NOT regexp '[0-9]''', '', 
                      IF((nakedEyeLeft + 0 = 0), nakedEyeLeft, nakedEyeLeft + 0))
WHERE `nakedEyeLeft` REGEXP '[^0-9.]' = 1 // 这个已经可以排除 null 了
 AND `nakedEyeLeft` != ''

PS:处理一个字段的SQL 看着就简单,但是因为批量一次处理 8 个字段,组合起来就很长。

千万注意不要写错字段。

最后剩下的就是第四类:文本、数字混杂,40 多条。

有些看着简单的,可以用正则自动化处理,比如<1、小于1。

记录的增长值,需要查找上次记录进行计算:较上次增长 10。

剩下有点复杂的,就需要人为处理,提取出可用数据,比如BD234/KD23

不知道看到这里的各位是不是也觉得有些麻烦呢?

我也以为咬着牙搞了,结果业务说直接处理成 0,到时候发现是 0 的话,可以通过页面重新保存的。

就不需要判断是不是数字打头了,直接 + 0;如果是数字打头,会保留开头的数字;否则 = 0。

那最后数据格式化SQL:

UPDATE property 
SET nakedEyeLeft = IF(nakedEyeLeft NOT regexp '[0-9]''', '', nakedEyeLeft + 0)
WHERE `nakedEyeLeft` REGEXP '[^0-9.]' = 1 // 这个已经可以排除 null 了
 AND `nakedEyeLeft` != '';

3.又要抽取内容、又要格式化,记录还有 900w+,太慢了

property 表有 900w+ 的数据,而所需记录的条件,只有name、ownerType、type是可知的,没法命中现有的索引。

如果直接查找的话,直接就是全表扫描,外加数据提取和格式化;更何况还需要关联其他表,补充统计指标的一些其他字段。

这种情况下,直接导入统计表的话,结果就是把两张表+关联表一起锁较长时间,期间没法更改和插入,这样不大现实。

减少扫描行数

做法一:给 name、ownerType、type 加上索引,将扫描记录缩减到 20 w。

但是问题是900w 数据加索引,用完需要删除索引(因为不是业务情况需要),就会导致两次波动;

再加上后续处理锁表时长,问题还是很大。

做法二:将一个记录较少的表做驱动表,这个表可以关联目标表。

CREATE TABLE `property` (
  `ownerId` int(11) NOT NULL COMMENT '记录ID或者模板ID',
  `ownerType` tinyint(4) NOT NULL COMMENT '类型。0:记录 1:模板',
  `type` tinyint(4) NOT NULL COMMENT '字段类型。0:文本 1:备选项 2:时间 3:图片 4:ICD10 9:新图片',
  `name` varchar(128) NOT NULL DEFAULT '' COMMENT '字段名称',
  `value` mediumtext NOT NULL COMMENT '字段值',
    省略其他字段
  UNIQUE KEY `idxOwnerIdOwnerTypeNameType` (`ownerType`,`ownerId`,`name`,`type`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='属性';

表中ownerId 可以关联到记录表,加上之前的条件name、ownerType、type,如此刚好命中 并``idxOwnerIdOwnerTypeNameType (ownerType,ownerId,name,type) 。

CREATE TABLE `medicalrecord` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `name` varchar(50) NOT NULL DEFAULT '' COMMENT '记录名称',
  `type` tinyint(4) NOT NULL DEFAULT '0' COMMENT '记录类型。',
    省略其他字段
  KEY `idxName` (`name`) USING BTREE
) ENGINE=InnoDB  DEFAULT CHARSET=utf8mb4 COMMENT='记录';

记录表可以通过 name='眼科记录'命中索引idxName,扫描行数只有2w,加上属性表 29w,最后扫描行数只有 30w 左右,比之全表扫描属性表少了 30 倍!!!。

避免数据提取和格式化的锁表时长

因为存在 8 个字段,每个字段都需要提取和格式化,中间还需要进行判断。这样子一个 SQL 里面同样的提取和格式化操作就要多次执行了。

所以,为了避免这样的问题,需要中间表暂存提取和格式化结果。

CREATE TABLE `propertytmp` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
   `value` mediumtext NOT NULL COMMENT '字段值',
  `nakedEyeLeft` varchar(255) DEFAULT NULL COMMENT '视力-裸眼-左眼',
  `nakedEyeRight` varchar(255) DEFAULT NULL COMMENT '视力-裸眼-右眼',
  `correctionLeft` varchar(255) DEFAULT NULL COMMENT '视力-矫正-左眼',
  `correctionRight` varchar(255) DEFAULT NULL COMMENT '视力-矫正-右眼',
  `axialLengthLeft` varchar(255) DEFAULT NULL COMMENT '眼轴长度-左眼',
  `axialLengthRight` varchar(255) DEFAULT NULL COMMENT '眼轴长度-右眼',
  `korneaRadiusLeft` varchar(255) DEFAULT NULL COMMENT '角膜曲率-左眼',
  `korneaRadiusRight` varchar(255) DEFAULT NULL COMMENT '角膜曲率-右眼',
  `updated` datetime NOT NULL COMMENT '更新时间',
  `deleted` tinyint(1) NOT NULL DEFAULT '0',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB  DEFAULT CHARSET=utf8mb4;

先将数据导入该表,在此基础上做提取,然后格式化。

最后执行结果比较

数据导入比较

结果:全表扫描属性表导入中间表(40s),属性表新增索引+导入(6s + 3s),关联导入(1.4s)。

因为需要关联其他表,并没有预测的那么理想。

中间表数据提取:7.5s

UPDATE `propertytmp` 
SET nakedEyeLeft = REPLACE(json_extract(value,'$.sight.axialLength.left'),'"',''),
nakedEyeLeft = REPLACE(json_extract(value,'$.sight.nakedEye.left'),'"',''),
nakedEyeRight = REPLACE(json_extract(value,'$.sight.nakedEye.right'),'"',''),
correctionLeft = REPLACE(json_extract(value,'$.sight.correction.left'),'"',''),
correctionRight = REPLACE(json_extract(value,'$.sight.correction.right'),'"',''),
axialLengthLeft = REPLACE(json_extract(value,'$.axialLength.left'),'"',''),
axialLengthRight = REPLACE(json_extract(value,'$.axialLength.right'),'"',''),
korneaRadiusLeft = REPLACE(json_extract(value,'$.korneaRadius.left'),'"',''),
korneaRadiusRight = REPLACE(json_extract(value,'$.korneaRadius.right'),'"','');

中间表数据格式化:2.3s

正则判断比我想象的要快啊

UPDATE propertytmp 
SET nakedEyeLeft = IF(nakedEyeLeft NOT REGEXP '[0-9]' AND nakedEyeLeft != '', '', nakedEyeLeft + 0), 
nakedEyeRight = IF(nakedEyeRight NOT REGEXP '[0-9]' AND nakedEyeRight != '', '', nakedEyeRight + 0), 
correctionLeft = IF(correctionLeft NOT REGEXP '[0-9]' AND correctionLeft != '', '', correctionLeft + 0),
correctionRight = IF(correctionRight NOT REGEXP '[0-9]' AND correctionRight != '', '', correctionRight + 0),
axialLengthLeft = IF(axialLengthLeft NOT REGEXP '[0-9]' AND axialLengthLeft != '', '', axialLengthLeft + 0),
axialLengthRight = IF(axialLengthRight NOT REGEXP '[0-9]' AND axialLengthRight != '', '', axialLengthRight + 0),
korneaRadiusLeft = IF(korneaRadiusLeft NOT REGEXP '[0-9]' AND korneaRadiusLeft != '', '', korneaRadiusLeft + 0),
korneaRadiusRight = IF(korneaRadiusRight NOT REGEXP '[0-9]' AND korneaRadiusRight != '', '', korneaRadiusRight + 0)
WHERE (`nakedEyeLeft` REGEXP '[^0-9.]' = 1
       AND `nakedEyeLeft` != '')
  OR (`nakedEyeRight` REGEXP '[^0-9.]' = 1
      AND `nakedEyeRight` != '')
  OR (`correctionLeft` REGEXP '[^0-9.]' = 1
      AND `correctionLeft` != '')
  OR (`correctionRight` REGEXP '[^0-9.]' = 1
      AND `correctionRight` != '')
  OR (`axialLengthLeft` REGEXP '[^0-9.]' = 1
      AND `axialLengthLeft` != '')
  OR (`axialLengthRight` REGEXP '[^0-9.]' = 1
      AND `axialLengthRight` != '')
  OR (`korneaRadiusLeft` REGEXP '[^0-9.]' = 1
      AND `korneaRadiusLeft` != '')
  OR (`korneaRadiusRight` REGEXP '[^0-9.]' = 1
      AND `korneaRadiusRight` != '');

统计指标中间表

因为实际导入统计指标表时,还需要排除为空数据,以及关联其他表做补充。

为了减少对指标表的影响,又建了指标表的中间表,结构完全一致,ID自增是目标表 + 10000。

将属性中间表的数据导入指标中间表,最后直接 INSERT ... SELECT FROM,就很快了。

当然这步其实有点矫枉过正了,但是为了避免线上的一些波动,还是谨慎一些较好。

总结

这是一次简单的数据迁移经历记录。

没有索引优化、SQL优化的内容,只是觉得大家需要有这种关注性能和对用户影响的考虑。

您可能感兴趣的文章:

相关文章