当前位置:主页 > 软件编程 > C代码 >

利用C语言玩转魔方阵实例教程

时间:2022-01-02 10:49:28 | 栏目:C代码 | 点击:

魔方阵

魔方阵,古代又称“纵横图”,是指组成元素为自然数1、2…n的平方的n×n的方阵,其中每个元素值都不相等,且每行、每列以及主、副对角线上各n个元素之和都相等。

如3×3的魔方阵:

8 1 6 
3 5 7 
4 9 2 

魔方阵的排列规律如下:

      (1)将1放在第一行中间一列;

     (2)从2开始直到n×n止各数依次按下列规则存放;每一个数存放的行比前一个数的行数减1,列数加1(例如上面的三阶魔方阵,5在4的上一行后一列);

     (3)如果上一个数的行数为1,则下一个数的行数为n(指最下一行);例如1在第一行,则2应放在最下一行,列数同样加1;

     (4)当上一个数的列数为n时,下一个数的列数应为1,行数减去1。例如2在第3行最后一列,则3应放在第二行第一列;

     (5)如果按上面规则确定的位置上已有数,或上一个数是第一行第n列时,则把下一个数放在上一个数的下面。例如按上面的规定,4应该放在第1行第2列,但该位置已经被占据,所以4就放在3的下面;

奇数魔方阵

奇数魔方阵就是将数字排列在nxn(n为奇数)的方阵上,要求满足各行、各列与各对角线的和相同。如下图所示,是n=5的奇数魔方阵。


填魔方阵的方法以奇数魔方阵最为简单,第一个数字放在第一行的正中央(填了1),然后向右(左)上填,如果右(左)上已有数字,则向下填,如下图所示:


一般程序语言的阵列多由0开始,为了计算方便,我们利用索引1到n的部份,而在计算是向右(左)上或向下时,我们可以将索引值除以n值,如果得到余数为1就向下,否则就往右(左)上。

#include

#include

#define N 5

int main(void) {

int i, j, key;

int square[N+1][N+1] = {0};

i = 0;

j = (N+1) / 2;

for(key = 1; key <= N*N; key++) {

if((key % N) == 1)

i++;

else {

i--;

j++;

}

if(i == 0)

i = N;

if(j > N)

j = 1;

square[i][j] = key;

}

for(i = 1; i <= N; i++) {

for(j = 1; j <= N; j++)

printf("%2d ", square[i][j]);

printf(" ");

}

return 0;

}

4N 魔方阵

与奇数魔术方阵相同,在于求各行、各列与各对角线的和相等,不同的是这次方阵的维度是4的倍数。

先来看看4X4方阵的解法:


简单的说,就是一个从左上由1依序开始填,但遇对角线不填,另一个由左上由16开始填,但只填在对角线,再将两个合起来就是解答了。如果N大于等于2,则以 4X4为单位画对角线,如下所示:


至于对角线的位置该如何判断,有两个公式,有兴趣的可以画图印证,如下:

左上至右下:j % 4 == i % 4

右上至左下:(j % 4 + i % 4) == 1

8阶魔方阵(N=2)的结果如下:


#include

#include

#define N 8

int main(void) {

int i, j;

int square[N+1][N+1] = {0};

for(j = 1; j <= N; j++) {

for(i = 1; i <= N; i++){

if(j % 4 == i % 4 || (j % 4 + i % 4) == 1)

square[i][j] = (N+1-i) * N -j + 1;

else

square[i][j] = (i - 1) * N + j;

}

}

for(i = 1; i <= N; i++) {

for(j = 1; j <= N; j++)

printf("%2d ", square[i][j]);

printf(" ");

}

return 0;

}

总结

您可能感兴趣的文章:

相关文章