时间:2021-09-05 09:45:00 | 栏目:C代码 | 点击:次
前言
C++11中提供了异步线程接口std::async,std::async是异步编程的高级封装,相对于直接使用std::thread,std::async的优势在于:
1、std::async会自动创建线程去调用线程函数,相对于低层次的std::thread,使用起来非常方便;
2、std::async返回std::future对象,通过返回的std::future对象我们可以非常方便的获取到线程函数的返回结果;
3、std::async提供了线程的创建策略,可以指定同步或者异步的方式去创建线程;
1、函数原型
C++ 11中提供如下函数原型:
template< class Function, class... Args> std::future<std::result_of_t<std::decay_t<Function>(std::decay_t<Args>...)>> async( Function&& f, Args&&... args );
template< class Function, class... Args > std::future<std::result_of_t<std::decay_t<Function>(std::decay_t<Args>...)>> async( std::launch policy, Function&& f, Args&&... args );
其中,参数f接收一个可调用对象(仿函数、lambda表达式、类成员函数、普通函数……),用于异步或是同步执行。
参数policy用于指定同步执行或者异步执行可调用对象,它的可选值有三种:
1)std::launch::async:异步执行可调用对象;
2)std::launch::deferred:同步执行可调用对象;
3)std::launch::async | std::launch::deferred 可以异步或是同步,取决于具体实现。
函数返回值:
函数返回值是std::future对象,我们可以执行get、wait、wait_for、wait_until函数获取或者等待执行结果。
调用std::future对象的get函数时,如果执行的是异步执行策略,如果异步执行没有结束,get函数调用会阻塞当前当前调用线程;如果执行的是同步执行策略,只有当调用get函数时才真正执行。
调用std::future对象的wait*函数时,可能返回三种状态:
1)std::future_status::deferred:可调用对象尚未开始执行;
2)std::future_status::ready:可调用对象执行完毕;
3)std::future_status::timeout:可调用对象执行超时;
2、头文件
#include <future>
3、同步或异步读取文件内容
我们模拟异步从数据库中读取数据和同步方式从文件中读取数据,从其中可以看到std::async的使用方法。
#include <iostream> #include <string> #include <chrono> #include <thread> #include <future> using namespace std::chrono; std::string fetchDataFromDB(std::string recvData) { std::cout << "fetchDataFromDB start" << std::this_thread::get_id() << std::endl; std::this_thread::sleep_for(seconds(5)); return "DB_" + recvData; } std::string fetchDataFromFile(std::string recvData) { std::cout << "fetchDataFromFile start" << std::this_thread::get_id() << std::endl; std::this_thread::sleep_for(seconds(3)); return "File_" + recvData; } int main() { std::cout << "main start" << std::this_thread::get_id() << std::endl; //获取开始时间 system_clock::time_point start = system_clock::now(); std::future<std::string> resultFromDB = std::async(std::launch::async, fetchDataFromDB, "Data"); //从文件获取数据 std::future<std::string> fileData = std::async(std::launch::deferred, fetchDataFromFile, "Data"); //调用get函数fetchDataFromFile才开始执行 std::string FileData = fileData.get(); //如果fetchDataFromDB执行没有完成,get会一直阻塞当前线程 std::string dbData = resultFromDB.get(); //获取结束时间 auto end = system_clock::now(); auto diff = duration_cast<std::chrono::seconds>(end - start).count(); std::cout << "Total Time taken= " << diff << "Seconds" << std::endl; //组装数据 std::string data = dbData + " :: " + FileData; //输出组装的数据 std::cout << "Data = " << data << std::endl; return 0; }
代码输出:
main start140677737994048
fetchDataFromFile start140677737994048
fetchDataFromDB start140677720131328
Total Time taken= 5Seconds
Data = DB_Data :: File_Data
4、设置异步数据读取超时机制
有时我们不能无限制的等待异步任务执行,可以设置超时等待时间(timeout),当超时时间到达时,可以选择放弃等待异步任务。
如果代码中,我们设置了1s的超时设置,用于检查异步线程是否执行完毕。
#include <iostream> #include <string> #include <chrono> #include <thread> #include <future> using namespace std::chrono; std::string fetchDataFromDB(std::string recvData) { std::cout << "fetchDataFromDB start" << std::this_thread::get_id() << std::endl; std::this_thread::sleep_for(seconds(5)); return "DB_" + recvData; } int main() { std::cout << "main start" << std::this_thread::get_id() << std::endl; //获取开始时间 system_clock::time_point start = system_clock::now(); std::future<std::string> resultFromDB = std::async(std::launch::async, fetchDataFromDB, "Data"); std::future_status status; std::string dbData; do { status = resultFromDB.wait_for(std::chrono::seconds(1)); switch (status) { case std::future_status::ready: std::cout << "Ready..." << std::endl; //获取结果 dbData = resultFromDB.get(); std::cout << dbData << std::endl; break; case std::future_status::timeout: std::cout << "timeout..." << std::endl; break; case std::future_status::deferred: std::cout << "deferred..." << std::endl; break; default: break; } } while (status != std::future_status::ready); //获取结束时间 auto end = system_clock::now(); auto diff = duration_cast<std::chrono::seconds>(end - start).count(); std::cout << "Total Time taken= " << diff << "Seconds" << std::endl; return 0; }
程序输出:
main start140406593357632
fetchDataFromDB start140406575482624
timeout...
timeout...
timeout...
timeout...
Ready...
DB_Data
Total Time taken= 5Seconds
5、使用std::async实现多线程并发
既然std::async可以实现异步调用,我们很容易就可以借用它实现多线程并发。
#include <iostream> #include <vector> #include <algorithm> #include <numeric> #include <future> #include <string> #include <mutex> #include <thread> template <typename RandomIt> int parallel_sum(RandomIt beg, RandomIt end) { std::cout << "thread id:" << std::this_thread::get_id() << std::endl; auto len = end - beg; if (len < 1000) return std::accumulate(beg, end, 0); RandomIt mid = beg + len/2; auto handle_me = std::async(std::launch::async, parallel_sum<RandomIt>, mid, end); auto handle_bm = std::async(std::launch::async, parallel_sum<RandomIt>, beg, mid); // int sum = parallel_sum(beg, mid); return handle_bm.get() + handle_me.get(); } int main() { std::vector<int> v(10000, 1); std::cout << "The sum is " << parallel_sum(v.begin(), v.end()) << std::endl; }
程序输出如下:
The sum is thread id:140594794530624
thread id:140594776655616
thread id:140594768262912
thread id:140594759870208
thread id:140594672297728
thread id:140594680690432
thread id:140594663905024
thread id:140594655512320
thread id:140594647119616
thread id:140594638726912
thread id:140594269644544
thread id:140594630334208
thread id:140594278037248
thread id:140594252859136
thread id:140594261251840
thread id:140594252859136
thread id:140594236073728
thread id:140594252859136
thread id:140594261251840
thread id:140594630334208
thread id:140594244466432
thread id:140594252859136
thread id:140594227681024
thread id:140594261251840
thread id:140593875384064
thread id:140593850205952
thread id:140593858598656
thread id:140593866991360
thread id:140594647119616
thread id:140594269644544
thread id:140594672297728
10000
6、其它注意事项
在使用时需要注意,std::future对象的析构需要等待std::async执行完毕,也就是说,如下面的代码并不能实现并发。原因在于std::async的返回的std::future对象无人接收,是个临时变量,临时变量的析构会阻塞,直至std::async异步任务执行完成。
std::async(std::launch::async, []{ f(); }); // temporary's dtor waits for f() std::async(std::launch::async, []{ g(); }); // does not start until f() completes
参考材料
https://en.cppreference.com/w/cpp/thread/async
www.jb51.net/article/198761.htm
总结