当前位置:主页 > 脚本语言 > Golang >

一文搞懂如何实现Go 超时控制

时间:2021-07-24 09:35:30 | 栏目:Golang | 点击:

为什么需要超时控制?

Go 超时控制必要性

Go 正常都是用来写后端服务的,一般一个请求是由多个串行或并行的子任务来完成的,每个子任务可能是另外的内部请求,那么当这个请求超时的时候,我们就需要快速返回,释放占用的资源,比如goroutine,文件描述符等。

服务端常见的超时控制

没有超时控制会怎样?

为了简化本文,我们以一个请求函数 hardWork 为例,用来做啥的不重要,顾名思义,可能处理起来比较慢。

func hardWork(job interface{}) error {
  time.Sleep(time.Minute)
  return nil
}

func requestWork(ctx context.Context, job interface{}) error {
 return hardWork(job)
}

这时客户端看到的就一直是大家熟悉的画面

<img src="https://gitee.com/kevwan/static/raw/master/doc/images/loading.jpg" width="25%">

绝大部分用户都不会看一分钟菊花,早早弃你而去,空留了整个调用链路上一堆资源的占用,本文不究其它细节,只聚焦超时实现。

下面我们看看该怎么来实现超时,其中会有哪些坑。

第一版实现

大家可以先不往下看,自己试着想想该怎么实现这个函数的超时,第一次尝试:

func requestWork(ctx context.Context, job interface{}) error {
  ctx, cancel := context.WithTimeout(ctx, time.Second*2)
  defer cancel()

  done := make(chan error)
  go func() {
    done <- hardWork(job)
  }()

  select {
  case err := <-done:
    return err
  case <-ctx.Done():
    return ctx.Err()
  }
}

我们写个 main 函数测试一下

func main() {
  const total = 1000
  var wg sync.WaitGroup
  wg.Add(total)
  now := time.Now()
  for i := 0; i < total; i++ {
    go func() {
      defer wg.Done()
      requestWork(context.Background(), "any")
    }()
  }
  wg.Wait()
  fmt.Println("elapsed:", time.Since(now))
}

跑一下试试效果

➜ go run timeout.go
elapsed: 2.005725931s

超时已经生效。但这样就搞定了吗?

goroutine 泄露

让我们在main函数末尾加一行代码看看执行完有多少goroutine

time.Sleep(time.Minute*2)
fmt.Println("number of goroutines:", runtime.NumGoroutine())

sleep 2分钟是为了等待所有任务结束,然后我们打印一下当前goroutine数量。让我们执行一下看看结果

➜ go run timeout.go
elapsed: 2.005725931s
number of goroutines: 1001

goroutine泄露了,让我们看看为啥会这样呢?首先,requestWork 函数在2秒钟超时后就退出了,一旦 requestWork 函数退出,那么 done channel 就没有goroutine接收了,等到执行 done <- hardWork(job) 这行代码的时候就会一直卡着写不进去,导致每个超时的请求都会一直占用掉一个goroutine,这是一个很大的bug,等到资源耗尽的时候整个服务就失去响应了。

那么怎么fix呢?其实也很简单,只要 make chan 的时候把 buffer size 设为1,如下:

done := make(chan error, 1)

这样就可以让 done <- hardWork(job) 不管在是否超时都能写入而不卡住goroutine。此时可能有人会问如果这时写入一个已经没goroutine接收的channel会不会有问题,在Go里面channel不像我们常见的文件描述符一样,不是必须关闭的,只是个对象而已,close(channel) 只是用来告诉接收者没有东西要写了,没有其它用途。

改完这一行代码我们再测试一遍:

➜ go run timeout.go
elapsed: 2.005655146s
number of goroutines: 1

goroutine泄露问题解决了!

panic 无法捕获

让我们把 hardWork 函数实现改成

panic("oops")

修改 main 函数加上捕获异常的代码如下:

go func() {
 defer func() {
  if p := recover(); p != nil {
   fmt.Println("oops, panic")
  }
 }()

 defer wg.Done()
 requestWork(context.Background(), "any")
}()

此时执行一下就会发现panic是无法被捕获的,原因是因为在 requestWork 内部起的goroutine里产生的panic其它goroutine无法捕获。

解决方法是在 requestWork 里加上 panicChan 来处理,同样,需要 panicChan 的 buffer size 为1,如下:

func requestWork(ctx context.Context, job interface{}) error {
  ctx, cancel := context.WithTimeout(ctx, time.Second*2)
  defer cancel()

  done := make(chan error, 1)
  panicChan := make(chan interface{}, 1)
  go func() {
    defer func() {
      if p := recover(); p != nil {
        panicChan <- p
      }
    }()

    done <- hardWork(job)
  }()

  select {
  case err := <-done:
    return err
  case p := <-panicChan:
    panic(p)
  case <-ctx.Done():
    return ctx.Err()
  }
}

改完就可以在 requestWork 的调用方处理 panic 了。

超时时长一定对吗?

上面的 requestWork 实现忽略了传入的 ctx 参数,如果 ctx 已有超时设置,我们一定要关注此传入的超时是不是小于这里给的2秒,如果小于,就需要用传入的超时,go-zero/core/contextx 已经提供了方法帮我们一行代码搞定,只需修改如下:

ctx, cancel := contextx.ShrinkDeadline(ctx, time.Second*2)

Data race

这里 requestWork 只是返回了一个 error 参数,如果需要返回多个参数,那么我们就需要注意 data race,此时可以通过锁来解决,具体实现参考 go-zero/zrpc/internal/serverinterceptors/timeoutinterceptor.go,这里不做赘述。

完整示例

package main

import (
  "context"
  "fmt"
  "runtime"
  "sync"
  "time"

  "github.com/tal-tech/go-zero/core/contextx"
)

func hardWork(job interface{}) error {
  time.Sleep(time.Second * 10)
  return nil
}

func requestWork(ctx context.Context, job interface{}) error {
  ctx, cancel := contextx.ShrinkDeadline(ctx, time.Second*2)
  defer cancel()

  done := make(chan error, 1)
  panicChan := make(chan interface{}, 1)
  go func() {
    defer func() {
      if p := recover(); p != nil {
        panicChan <- p
      }
    }()

    done <- hardWork(job)
  }()

  select {
  case err := <-done:
    return err
  case p := <-panicChan:
    panic(p)
  case <-ctx.Done():
    return ctx.Err()
  }
}

func main() {
  const total = 10
  var wg sync.WaitGroup
  wg.Add(total)
  now := time.Now()
  for i := 0; i < total; i++ {
    go func() {
      defer func() {
        if p := recover(); p != nil {
          fmt.Println("oops, panic")
        }
      }()

      defer wg.Done()
      requestWork(context.Background(), "any")
    }()
  }
  wg.Wait()
  fmt.Println("elapsed:", time.Since(now))
  time.Sleep(time.Second * 20)
  fmt.Println("number of goroutines:", runtime.NumGoroutine())
}

更多细节

请参考 go-zero 源码:

项目地址
https://github.com/tal-tech/go-zero

您可能感兴趣的文章:

相关文章