当前位置:主页 > 软件编程 > C代码 >

全排列算法的原理和实现代码

时间:2021-06-23 09:21:56 | 栏目:C代码 | 点击:

全排列是将一组数按一定顺序进行排列,如果这组数有n个,那么全排列数为n!个。现以{1, 2, 3, 4, 5}为例说明如何编写全排列的递归算法。

1、首先看最后两个数4, 5。 它们的全排列为4 5和5 4, 即以4开头的5的全排列和以5开头的4的全排列。

由于一个数的全排列就是其本身,从而得到以上结果。

2、再看后三个数3, 4, 5。它们的全排列为3 4 5、3 5 4、 4 3 5、 4 5 3、 5 3 4、 5 4 3 六组数。

即以3开头的和4,5的全排列的组合、以4开头的和3,5的全排列的组合和以5开头的和3,4的全排列的组合.

从而可以推断,设一组数p = {r1, r2, r3, ... ,rn}, 全排列为perm(p),pn = p - {rn}。

因此perm(p) = r1perm(p1), r2perm(p2), r3perm(p3), ... , rnperm(pn)。当n = 1时perm(p} = r1。

为了更容易理解,将整组数中的所有的数分别与第一个数交换,这样就总是在处理后n-1个数的全排列。

算法如下:

#include <stdio.h> 

int n = 0; 

void swap(int *a, int *b) 
{   
  int m;   
  m = *a;   
  *a = *b;   
  *b = m; 
} 
void perm(int list[], int k, int m) 
{   
  int i;   
  if(k > m)   
  {     
    for(i = 0; i <= m; i++)       
      printf("%d ", list[i]);     
    printf("\n");     
    n++;   
  }   
  else   
  {     
    for(i = k; i <= m; i++)     
    {       
      swap(&list[k], &list[i]);       
      perm(list, k + 1, m);       
      swap(&list[k], &list[i]);     
    }   
  } 
} 
int main() 
{   
  int list[] = {1, 2, 3, 4, 5};   
  perm(list, 0, 4);   
  printf("total:%d\n", n);   
  return 0; 
}

谁有更高效的递归和非递归算法,请回贴。

您可能感兴趣的文章:

相关文章