当前位置:主页 > 软件编程 > C代码 >

opencv车道线检测的实现方法

时间:2021-05-28 08:01:55 | 栏目:C代码 | 点击:

车道线检测,需要完成以下功能:

实现的效果

 

在亮度良好道路条件良好的情况下,检测车前区域的车道线实现比较成功,排除掉高速护栏的影响,而且原图像还能完整体现。

 

车子行驶在高速公路大型弯道上,可以在一定角度范围内认定车道线仍是直线,检测出为直线。

 

车子切换过程中只有一根车道线被识别,但是稳定回变换车道后,实现效果良好。减速线为黄色,二值化是也被过滤,没造成影响。

 

 

刚进入隧道时,摄像机光源基本处于高光状态,拍摄亮度基本不变,二值化图像时情况良好,噪声比较多但是没产生多大线状影响;当摄像头自动调节亮度,图像亮度变低,二值化时同一阈值把车道线给过滤掉,造成无法识别车道线的现象。

 

在道路损坏的情况下,由于阈值一定,基本上检测不出车道线。

结论

实现的功能:实现了车道线检测的基本功能,反透视变换矩阵实现了但效果不太理想,使用自己写的直线检测部分,车道线识别抗干扰能力较强。

缺点:整个识别系统都是固定的参数,只能在特定的环境产生良好的效果。

改进空间:提取全部关键参数,每次对ROI图像进行快速扫描更新参数,否则使用默认参数。例如,可以选择每次5间隔取点,以像素最高点的85%作为该次二值化的阈值。从而做到动态车道线识别。

完整代码

方法一

main.cpp

#include<cv.h>
#include<cxcore.h>
#include<highgui.h>
#include"mylinedetect.h"

#include<cstdio>
#include<iostream>
using namespace std;

int main(){
  //声明IplImage指针
  IplImage* pFrame = NULL;
  IplImage* pCutFrame = NULL;
  IplImage* pCutFrImg = NULL;
  //声明CvCapture指针
  CvCapture* pCapture = NULL;
  //声明CvMemStorage和CvSeg指针
  CvMemStorage* storage = cvCreateMemStorage();
  CvSeq* lines = NULL;
  //生成视频的结构
  VideoWriter writer("result.avi", CV_FOURCC('M', 'J', 'P', 'G'), 25.0, Size(856, 480));
  //当前帧数
  int nFrmNum = 0;
  //裁剪的天空高度
  int CutHeight = 310;
  //窗口命名
  cvNamedWindow("video", 1);
  cvNamedWindow("BWmode", 1);
  //调整窗口初始位置
  cvMoveWindow("video", 300, 0);
  cvMoveWindow("BWmode", 300, 520);
  //不能打开则退出
  if (!(pCapture = cvCaptureFromFile("lane.avi"))){
    fprintf(stderr, "Can not open video file\n");
    return -2;
  }
  //每次读取一桢的视频
  while (pFrame = cvQueryFrame(pCapture)){
    //设置ROI裁剪图像
    cvSetImageROI(pFrame, cvRect(0, CutHeight, pFrame->width, pFrame->height - CutHeight));
    nFrmNum++;
    //第一次要申请内存p
    if (nFrmNum == 1){
      pCutFrame = cvCreateImage(cvSize(pFrame->width, pFrame->height - CutHeight), pFrame->depth, pFrame->nChannels);
      cvCopy(pFrame, pCutFrame, 0);
      pCutFrImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1);
      //转化成单通道图像再处理
      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);
    }
    else{
      //获得剪切图
      cvCopy(pFrame, pCutFrame, 0);
#if 0    //反透视变换
      //二维坐标下的点,类型为浮点
      CvPoint2D32f srcTri[4], dstTri[4];
      CvMat* warp_mat = cvCreateMat(3, 3, CV_32FC1);
      //计算矩阵反射变换
      srcTri[0].x = 10;
      srcTri[0].y = 20;
      srcTri[1].x = pCutFrame->width - 5;
      srcTri[1].y = 0;
      srcTri[2].x = 0;
      srcTri[2].y = pCutFrame->height - 1;
      srcTri[3].x = pCutFrame->width - 1;
      srcTri[3].y = pCutFrame->height - 1;
      //改变目标图像大小
      dstTri[0].x = 0;
      dstTri[0].y = 0;
      dstTri[1].x = pCutFrImg->width - 1;
      dstTri[1].y = 0;
      dstTri[2].x = 0;
      dstTri[2].y = pCutFrImg->height - 1;
      dstTri[3].x = pCutFrImg->width - 1;
      dstTri[3].y = pCutFrImg->height - 1;
      //获得矩阵
      cvGetPerspectiveTransform(srcTri, dstTri, warp_mat);
      //反透视变换
      cvWarpPerspective(pCutFrame, pCutFrImg, warp_mat);
#endif
      //前景图转换为灰度图
      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);
      //二值化前景图
      cvThreshold(pCutFrImg, pCutFrImg, 80, 255.0, CV_THRESH_BINARY);
      //进行形态学滤波,去掉噪音
      cvErode(pCutFrImg, pCutFrImg, 0, 2);
      cvDilate(pCutFrImg, pCutFrImg, 0, 2);
      //canny变化
      cvCanny(pCutFrImg, pCutFrImg, 50, 120);
      //sobel变化
      //Mat pCutFrMat(pCutFrImg);
      //Sobel(pCutFrMat, pCutFrMat, pCutFrMat.depth(), 1, 1);
      //laplacian变化
      //Laplacian(pCutFrMat, pCutFrMat, pCutFrMat.depth());
#if 1    //0为下面的代码,1为上面的代码
  #pragma region Hough直线检测
      lines = cvHoughLines2(pCutFrImg, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 100, 15, 15);
      printf("Lines number: %d\n", lines->total);
      //画出直线
      for (int i = 0; i<lines->total; i++){
        CvPoint* line = (CvPoint*)cvGetSeqElem(lines, i);
        double k = ((line[0].y - line[1].y)*1.0 / (line[0].x - line[1].x));
        cout<<"nFrmNum "<<nFrmNum<<" 's k = "<<k<<endl;
        if(!(abs(k)<0.1))//去掉水平直线
          cvLine(pFrame, line[0], line[1], CV_RGB(255, 0, 0), 6, CV_AA);
      }
  #pragma endregion
#else
  #pragma region mylinedetect
      Mat edge(pCutFrImg);
      vector<struct line> lines = detectLine(edge, 60);
      Mat pFrameMat(pFrame);
      drawLines(pFrameMat, lines);
      namedWindow("mylinedetect", 1);
      imshow("mylinedetect", pFrameMat);
  #pragma endregion
#endif
      //恢复ROI区域
      cvResetImageROI(pFrame);
      //写入视频流
      writer << pFrame;
      //显示图像
      cvShowImage("video", pFrame);
      cvShowImage("BWmode", pCutFrImg);
      //按键事件,空格暂停,其他跳出循环
      int temp = cvWaitKey(2);
      if (temp == 32){
        while (cvWaitKey() == -1);
      }
      else if (temp >= 0){
        break;
      }
    }
  }
  //销毁窗口
  cvDestroyWindow("video");
  cvDestroyWindow("BWmode");
  //释放图像
  cvReleaseImage(&pCutFrImg);
  cvReleaseImage(&pCutFrame);
  cvReleaseCapture(&pCapture);

  return 0;
}

mylinedetect.h

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <vector>
#include <cmath>
using namespace cv;
using namespace std;

const double pi = 3.1415926f;
const double RADIAN = 180.0 / pi;

struct line{
  int theta;
  int r;
};

vector<struct line> detectLine(Mat &img, int threshold){
  vector<struct line> lines;
  int diagonal = floor(sqrt(img.rows*img.rows + img.cols*img.cols));
  vector< vector<int> >p(360, vector<int>(diagonal));
  //统计数量
  for (int j = 0; j < img.rows; j++) {
    for (int i = 0; i < img.cols; i++) {
      if (img.at<unsigned char>(j, i) > 0){
        for (int theta = 0; theta < 360; theta++){
          int r = floor(i*cos(theta / RADIAN) + j*sin(theta / RADIAN));
          if (r < 0)
            continue;
          p[theta][r]++;
        }
      }
    }
  }
  //获得最大值
  for (int theta = 0; theta < 360; theta++){
    for (int r = 0; r < diagonal; r++){
      int thetaLeft = max(0, theta - 1);
      int thetaRight = min(359, theta + 1);
      int rLeft = max(0, r - 1);
      int rRight = min(diagonal - 1, r + 1);
      int tmp = p[theta][r];
      if (tmp > threshold
        && tmp > p[thetaLeft][rLeft] && tmp > p[thetaLeft][r] && tmp > p[thetaLeft][rRight]
        && tmp > p[theta][rLeft] && tmp > p[theta][rRight]
        && tmp > p[thetaRight][rLeft] && tmp > p[thetaRight][r] && tmp > p[thetaRight][rRight]){
        struct line newline;
        newline.theta = theta;
        newline.r = r;
        lines.push_back(newline);
      }
    }
  }
  return lines;
}

void drawLines(Mat &img, const vector<struct line> &lines){
  for (int i = 0; i < lines.size(); i++){
    vector<Point> points;
    int theta = lines[i].theta;
    int r = lines[i].r;

    double ct = cos(theta / RADIAN);
    double st = sin(theta / RADIAN);

    //公式 r = x*ct + y*st
    //计算左边
    int y = int(r / st);
    if (y >= 0 && y < img.rows){
      Point p(0, y);
      points.push_back(p);
    }
    //计算右边
    y = int((r - ct*(img.cols - 1)) / st);
    if (y >= 0 && y < img.rows){
      Point p(img.cols - 1, y);
      points.push_back(p);
    }
    //计算上边
    int x = int(r / ct);
    if (x >= 0 && x < img.cols){
      Point p(x, 0);
      points.push_back(p);
    }
    //计算下边
    x = int((r - st*(img.rows - 1)) / ct);
    if (x >= 0 && x < img.cols){
      Point p(x, img.rows - 1);
      points.push_back(p);
    }
    //画线
    cv::line(img, points[0], points[1], Scalar(255, 0, 0), 5, CV_AA);
  }
}

方法二:

#include<cv.h>
#include<cxcore.h>
#include<highgui.h>

#include<cstdio>
#include<iostream>
using namespace std;

int main(){
  //声明IplImage指针
  IplImage* pFrame = NULL;
  IplImage* pCutFrame = NULL;
  IplImage* pCutFrImg = NULL;
  IplImage* pCutBkImg = NULL;
  //声明CvMat指针
  CvMat* pCutFrameMat = NULL;
  CvMat* pCutFrMat = NULL;
  CvMat* pCutBkMat = NULL;
  //声明CvCapture指针
  CvCapture* pCapture = NULL;
  //声明CvMemStorage和CvSeg指针
  CvMemStorage* storage = cvCreateMemStorage();
  CvSeq* lines = NULL;
  //当前帧数
  int nFrmNum = 0;
  //裁剪的天空高度
  int CutHeight = 250;
  //窗口命名
  cvNamedWindow("video", 1);
  //cvNamedWindow("background", 1);
  cvNamedWindow("foreground", 1);
  //调整窗口初始位置
  cvMoveWindow("video", 300, 30);
  cvMoveWindow("background", 100, 100);
  cvMoveWindow("foreground", 300, 370);
  //不能打开则退出
  if (!(pCapture = cvCaptureFromFile("lane.avi"))){
    fprintf(stderr, "Can not open video file\n");
    return -2;
  }
  //每次读取一桢的视频
  while (pFrame = cvQueryFrame(pCapture)){
    //设置ROI裁剪图像
    cvSetImageROI(pFrame, cvRect(0, CutHeight, pFrame->width, pFrame->height - CutHeight));
    nFrmNum++;
    //第一次要申请内存p
    if (nFrmNum == 1){
      pCutFrame = cvCreateImage(cvSize(pFrame->width, pFrame->height - CutHeight), pFrame->depth, pFrame->nChannels);
      cvCopy(pFrame, pCutFrame, 0);
      pCutBkImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1);
      pCutFrImg = cvCreateImage(cvSize(pCutFrame->width, pCutFrame->height), IPL_DEPTH_8U, 1);

      pCutBkMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1);
      pCutFrMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1);
      pCutFrameMat = cvCreateMat(pCutFrame->height, pCutFrame->width, CV_32FC1);
      //转化成单通道图像再处理
      cvCvtColor(pCutFrame, pCutBkImg, CV_BGR2GRAY);
      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);
      //转换成矩阵
      cvConvert(pCutFrImg, pCutFrameMat);
      cvConvert(pCutFrImg, pCutFrMat);
      cvConvert(pCutFrImg, pCutBkMat);
    }
    else{
      //获得剪切图
      cvCopy(pFrame, pCutFrame, 0);
      //前景图转换为灰度图
      cvCvtColor(pCutFrame, pCutFrImg, CV_BGR2GRAY);
      cvConvert(pCutFrImg, pCutFrameMat);
      //高斯滤波先,以平滑图像
      cvSmooth(pCutFrameMat, pCutFrameMat, CV_GAUSSIAN, 3, 0, 0.0);
      //当前帧跟背景图相减
      cvAbsDiff(pCutFrameMat, pCutBkMat, pCutFrMat);
      //二值化前景图
      cvThreshold(pCutFrMat, pCutFrImg, 35, 255.0, CV_THRESH_BINARY);
      //进行形态学滤波,去掉噪音
      cvErode(pCutFrImg, pCutFrImg, 0, 1);
      cvDilate(pCutFrImg, pCutFrImg, 0, 1);
      //更新背景
      cvRunningAvg(pCutFrameMat, pCutBkMat, 0.003, 0);
      //pCutBkMat = cvCloneMat(pCutFrameMat);
      //将背景转化为图像格式,用以显示
      //cvConvert(pCutBkMat, pCutBkImg);
      cvCvtColor(pCutFrame, pCutBkImg, CV_BGR2GRAY);
      //canny变化
      cvCanny(pCutFrImg, pCutFrImg, 50, 100);
      #pragma region Hough检测
      lines = cvHoughLines2(pCutFrImg, storage, CV_HOUGH_PROBABILISTIC, 1, CV_PI / 180, 100, 30, 15);
      printf("Lines number: %d\n", lines->total);
      //画出直线
      for (int i = 0; i<lines->total; i++){
        CvPoint* line = (CvPoint* )cvGetSeqElem(lines, i);
        cvLine(pCutFrame, line[0], line[1], CV_RGB(255, 0, 0), 6, CV_AA);
      }
      #pragma endregion
      //显示图像
      cvShowImage("video", pCutFrame);
      cvShowImage("background", pCutBkImg);
      cvShowImage("foreground", pCutFrImg);
      //按键事件,空格暂停,其他跳出循环
      int temp = cvWaitKey(2);
      if (temp == 32){
        while (cvWaitKey() == -1);
      }
      else if (temp >= 0){
        break;
      }
    }
    //恢复ROI区域(多余可去掉)
    cvResetImageROI(pFrame);
  }
  //销毁窗口
  cvDestroyWindow("video");
  cvDestroyWindow("background");
  cvDestroyWindow("foreground");
  //释放图像和矩阵
  cvReleaseImage(&pCutFrImg);
  cvReleaseImage(&pCutBkImg);
  cvReleaseImage(&pCutFrame);
  cvReleaseMat(&pCutFrameMat);
  cvReleaseMat(&pCutFrMat);
  cvReleaseMat(&pCutBkMat);
  cvReleaseCapture(&pCapture);

  return 0;
}

您可能感兴趣的文章:

相关文章