时间:2020-10-15 23:15:34 | 栏目:Python代码 | 点击:次
多线程适合于多io操作
多进程适合于耗cpu(计算)的操作
# 多进程编程 # 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程 import time from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ProcessPoolExecutor def fib(n): if n <= 2: return 1 return fib(n - 2) + fib(n - 1) if __name__ == '__main__': # 1. 对于耗cpu操作,多进程优于多线程 # with ThreadPoolExecutor(3) as executor: # all_task = [executor.submit(fib, num) for num in range(25, 35)] # start_time = time.time() # for future in as_completed(all_task): # data = future.result() # print(data) # print("last time :{}".format(time.time() - start_time)) # 3.905290126800537 # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常 with ProcessPoolExecutor(3) as executor: all_task = [executor.submit(fib, num) for num in range(25, 35)] start_time = time.time() for future in as_completed(all_task): data = future.result() print(data) print("last time :{}".format(time.time() - start_time)) # 2.6130592823028564
可以看到在耗cpu的应用中,多进程明显优于多线程 2.6130592823028564 < 3.905290126800537
下面模拟一个io操作
# 多进程编程 # 耗cpu的操作,用多进程编程, 对于io操作来说,使用多线程编程 import time from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ProcessPoolExecutor def io_operation(n): time.sleep(2) return n if __name__ == '__main__': # 1. 对于耗cpu操作,多进程优于多线程 # with ThreadPoolExecutor(3) as executor: # all_task = [executor.submit(io_operation, num) for num in range(25, 35)] # start_time = time.time() # for future in as_completed(all_task): # data = future.result() # print(data) # print("last time :{}".format(time.time() - start_time)) # 8.00358772277832 # 多进程 ,在window环境 下必须放在main方法中执行,否则抛异常 with ProcessPoolExecutor(3) as executor: all_task = [executor.submit(io_operation, num) for num in range(25, 35)] start_time = time.time() for future in as_completed(all_task): data = future.result() print(data) print("last time :{}".format(time.time() - start_time)) # 8.12435245513916
可以看到 8.00358772277832 < 8.12435245513916, 即是多线程比多进程更牛逼!