时间:2020-10-15 09:31:56 | 栏目:Python代码 | 点击:次
如下所示:
.count() #非空元素计算 .min() a #最小值 .max() #最大值 .idxmin() #最小值的位置,类似于R中的which.min函数 .idxmax() #最大值的位置,类似于R中的which.max函数 .quantile(0.75) #75%分位数 .sum() #求和 .mean() #均值 .median() #中位数 .mode() #众数 .var() #方差 .std() #标准差 .mad() #平均绝对偏差 .skew() #偏度 .kurt() #峰度 .describe() #一次性输出多个描述性统计指标
如果你想统计各个列大于0的元素个数:
data[data>0].count()
会出现各个属性(列)大于零的个数
data[data['A']>0].count()
列A大于0的个数
这里说明,data的数据格式必须是DataFrame
pd.Series().value_counts(),会统计各个类的统计值。
我们在用这些函数时,会迷茫,不知道什么时候value_counts(),什么时候count()
这和前面的数据形式是有关的,只要前面是Series数据,要用value_counts(),前面数据形式是DataFrame要用count()