欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python插件机制实现详解

时间:2020-10-04 14:44:39|栏目:Python代码|点击:

插件机制是代码/功能反向依赖注入到主体程序的一种方法,编译型语言通过动态加载动态库实现插件。对于Python这样的脚本语言,实现插件机制更简单。

机制

Python的__import__方法可以动态地加载Python文件,即以某个py脚本的文件名作为__import__的参数,在程序运行的时候加载py脚本程序模块。对应的import关键字则是静态加载依赖的py模块。

描述

__import__() 函数用于动态加载类和函数 。

如果一个模块经常变化就可以使用 __import__() 来动态载入。

语法

__import__ 语法:

__import__(name[, globals[, locals[, fromlist[, level]]]])

参数说明:

name -- 模块名

需要动态加载的py脚本若存放在任意的目录下,则需要首先需要增加脚本查找路径:

sys.path.append(modulePath)

应用示例

# 增加查找路径
sys.path.append(modulePath)
# 加载脚本
module = __import__(moduleName) 
# 保存脚本对象,否则会被析构    
self.modules[moduleName] = module
# 调用插件中的方法初始化
module.InitModule(self) 

总结

使用插件机制可以实现高内聚低耦合的程序。

在实践中,我们处理的任务有若干的可执行程序配合完成,可执行程序可以是C++,.Net , Java,甚至其他脚本程序,这时候我们使用Python作为粘合剂,定义了主体的任务流程框架,使用插件机制动态的注入需要执行的任务。

另外当在不同的情况下,需要使用不同的exe配合的时候,我们只需要用json定义需要的exe组合,主程序不需要做任何的更改就可以满足变换的业务需求。

补充知识:Kusto使用python plugin

整个流程为kusto的数据进入python脚本时自动转化为pandas DataFrame,

python 脚本的输出自动转化为kusto table,其中列名和变量都保持不变。

Python 脚本紧接着Kusto的输出

注意以下几点

1.typeof为python脚本输出的参数

2.typeof 中的数据类型跟python脚本输出pandas DataFrame列是完全一致的,包括变量名,变量类型,前后不一致的话会报错

3.typeof 中*表示复用输入的数据类型, 比如( *,age:int) 表示输入在输出的基础上多个了age属性

4. python脚本的输入是转化为DataFrame 的kusto table, 其在python脚本里的变量名为df(会自动匹配上), 同时我们要让输出的DataFrame 命名为result, 程序会自动输出

5. python 中可以接受外界参数,通过 kargs["topK"]这样的形式,kargs是系统默认的传递参数的变量, 同时kusto在python脚本的最后通过pack("topK", 10)这样的形式往python脚本中传递参数

6 .python脚本可以直接写在kusto代码中,也可以以链接的形式访问

7. kusto 中的python运行企业版的anaconda上,个人没法轻易安装自己想要的包,所以如果要使用某些包,最好是将其功能用最基本的包写好。kusto 运行镜像的沙盒支持 numpy ,pd, 以及tensorflow ,keras ,torch hdbscan, xgboost 这些比较大众的包

上一篇:python不带重复的全排列代码

栏    目:Python代码

下一篇:python正则表达式 匹配反斜杠的操作方法

本文标题:Python插件机制实现详解

本文地址:http://www.codeinn.net/misctech/6912.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有