欢迎来到代码驿站!

当前位置:首页 >

Pytorch 扩展Tensor维度、压缩Tensor维度的方法

时间:2020-09-09 11:00:20|栏目:|点击:

1. 扩展Tensor维度

  相信刚接触Pytorch的宝宝们,会遇到这样一个问题,输入的数据维度和实验需要维度不一致,输入的可能是2维数据或3维数据,实验需要用到3维或4维数据,那么我们需要扩展这个维度。其实特别简单,只要对数据加一个扩展维度方法就可以了。

1.1torch.unsqueeze(self: Tensor, dim: _int)

  torch.unsqueeze(self: Tensor, dim: _int)

  参数说明:self:输入的tensor数据,dim:要对哪个维度扩展就输入那个维度的整数,可以输入0,1,2……

1.2Code

第一种方式,输入数据后直接加unsqueeze()

  扩展第一维和第二维为1

import torch


def reset_unsqueeze1():
 data = torch.rand([3, 3])
 data1 = data.unsqueeze(dim=0).unsqueeze(dim=1)
 print("data_size: ", data.shape)
 print("data: ", data)
 print("data1_size: ", data1.shape)
 print("data1: ", data1)

结果显示

第二种方式,用torch.unsqueeze()

import torch


def reset_unsqueeze2():
 data = torch.rand([3, 3])
 data1 = torch.unsqueeze(data, dim=0)
 print("data_size: ", data.shape)
 print("data: ", data)
 print("data1_size: ", data1.shape)
 print("data1: ", data1)

结果显示

2. 压缩Tensor维度

2.1torch.squeeze(self: Tensor, dim: _int)

  这个方法刚好和torch.unsqueeze()方法效果相反,压缩Tensor维度。

2.2 Code

第一种方式,输入数据后直接加squeeze()

import torch


def reset_squeeze1():
 data = torch.rand([1, 1, 3, 3])
 data1 = data.squeeze(dim=0).squeeze(dim=1)
 print("data_size: ", data.shape)
 print("data: ", data)
 print("data1_size: ", data1.shape)
 print("data1: ", data1)

结果显示

第二种方式,用torch.squeeze()

import torch


def reset_squeeze2():
 data = torch.rand([1, 1, 3, 3])
 data1 = torch.squeeze(data, dim=0)
 print("data_size: ", data.shape)
 print("data: ", data)
 print("data1_size: ", data1.shape)
 print("data1: ", data1)

结果显示

上一篇:vue+高德地图实现地图搜索及点击定位操作

栏    目:

下一篇:R语言ggplot2边框背景去除的实现

本文标题:Pytorch 扩展Tensor维度、压缩Tensor维度的方法

本文地址:http://www.codeinn.net/misctech/4723.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有