欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch 固定部分参数训练的方法

时间:2021-01-10 11:06:49|栏目:Python代码|点击:

需要自己过滤

optimizer.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3)

另外,如果是Variable,则可以初始化时指定

j = Variable(torch.randn(5,5), requires_grad=True)

但是如果是

m = nn.Linear(10,10)

是没有requires_grad传入的

m.requires_grad也没有

需要

for i in m.parameters():
  i.requires_grad=False

另外一个小技巧就是在nn.Module里,可以在中间插入这个

for p in self.parameters():
  p.requires_grad=False

这样前面的参数就是False,而后面的不变

class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, 6, 5)
    self.conv2 = nn.Conv2d(6, 16, 5)

    for p in self.parameters():
      p.requires_grad=False

    self.fc1 = nn.Linear(16 * 5 * 5, 120)
    self.fc2 = nn.Linear(120, 84)
    self.fc3 = nn.Linear(84, 10)

上一篇:如何用Python实现简单的Markdown转换器

栏    目:Python代码

下一篇:十行代码使用Python写一个USB病毒

本文标题:pytorch 固定部分参数训练的方法

本文地址:http://www.codeinn.net/misctech/43243.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有