欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

Python Pandas数据结构简单介绍

时间:2021-01-09 11:14:22|栏目:Python代码|点击:

Series

Series 类似一维数组,由一组数据及一组相关数据标签组成。使用pandas的Series类即可创建。

import pandas as pd
s1 = pd.Series(['a', 'b', 'c,', 'd'])
print(s1)
#输出: 0   a 
#   1   b
#   2   c
#   3   d
#   dtype: object

上面是传入一个列表实现,上面的0,1,2,3就是数据的默认标签。另外可以通过index属性自定义标签。

s2 = pd.Series(['1', '2', '3,', '4'],index=['a', 'b', 'c,', 'd']) # index设置自定义索引
print(s2)

另外Series还可以通过字典传参。

s3 = pd.Series({'a':1,'b':2})
print(s3.values) # 通过values获取它的值

DataFrame

DataFrame是由一组数据和一组索引组成的数据结构,有行索引和列索引。和excel类似,是一种表格型数据结构。下面的就是一种简单的DataFrame数据格式

   技能 
 0  python 
 1  Java

DataFrame类中可传入列表实例化一个dataframe的表格数据对象,此时行和列索引默认都是0.常见的是传入嵌套的列表,嵌套的里面的列表也可以是元祖,如果不指定索引行列索引都是从0,1开始自增,并可以通过columns、index自定义的列索引和行索引。详见下面的代码。

import pandas as pd
df2 = pd.DataFrame([('a','A'),('b','B'),('c','C'),('d','D')]) # 传一个嵌套列表,嵌套里的数据可以是元祖,也可是列表
print(df2)

输出的格式如下:

  0   1 

0  a  A 

1  b  B 

2  c  C 

3  d  D
df3 = pd.DataFrame([('a','A'),('b','B'),('c','C'),('d','D')],columns=['小写','大写'])
print(df3)
  小写 大写 

0 a    A

1 b    B

2 c    C

3 d    D

DataFrame类中也可传入字典来实例化一个dataframe的表格数据对象,此时字典的key就相当于列索引,此时行索引默认还是从0开始,另外也可通过 index来自定义列索引。

上一篇:python3.x上post发送json数据

栏    目:Python代码

下一篇:Python基于yield遍历多个可迭代对象

本文标题:Python Pandas数据结构简单介绍

本文地址:http://www.codeinn.net/misctech/42573.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有