欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式

时间:2021-01-01 13:15:56|栏目:Python代码|点击:

已经有了一个预训练的模型,我需要从其中取出某一层,把该层的weights和biases赋值到新的网络结构中,可以使用tensorflow中的pywrap_tensorflow(用来读取预训练模型的参数值)结合Session.assign()进行操作。

这种需求即预训练模型可能为单分支网络,当前网络为多分支,我需要把单分支A复用到到多个分支去(B,C,D)。

先导入对应的工具包

from tensorflow.python import pywrap_tensorflow

接下来的操作在一个tf.Session中进行

reader = pywrap_tensorflow.NewCheckpointReader(pre_train_model_path)

# 获取当前图可训练变量
trainable_variables = tf.trainable_variables()
# 需要赋值的当前网络层变量,这里只是随便起的名字。
restore_v_target_name = "fc_target"
# 需要的预训练模型中的某层的名字
restore_v_source_name = "fc_source"
for v in trainable_variables:
  if restore_v_target_name == v.name:
   # 回复weights和biases
    sess.run(
      tf.assign(v, reader.get_tensor(restore_v_source_name + "/weights"))) if "weights" in v.name else sess.run(
      tf.assign(v, reader.get_tensor(restore_v_source_name + "/biases")))

上一篇:使用python实现正则匹配检索远端FTP目录下的文件

栏    目:Python代码

下一篇:django 解决manage.py migrate无效的问题

本文标题:tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式

本文地址:http://www.codeinn.net/misctech/38944.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有