欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

pytorch 更改预训练模型网络结构的方法

时间:2020-12-07 16:38:58|栏目:Python代码|点击:

一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):

resnet_layer = nn.Sequential(*list(model.children())[:-2])

那么,接下来就可以构建我们的网络了:

class Net(nn.Module):
  def __init__(self , model):
    super(Net, self).__init__()
    #取掉model的后两层
    self.resnet_layer = nn.Sequential(*list(model.children())[:-2])
    
    self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3)
    self.pool_layer = nn.MaxPool2d(32) 
    self.Linear_layer = nn.Linear(2048, 8)
    
  def forward(self, x):
    x = self.resnet_layer(x)
 
    x = self.transion_layer(x)
 
    x = self.pool_layer(x)
 
    x = x.view(x.size(0), -1) 
 
    x = self.Linear_layer(x)
    
    return x

最后,构建一个对象,并加载resnet预训练的参数就可以啦~

resnet = models.resnet50(pretrained=True)
model = Net(resnet)

上一篇:keras在构建LSTM模型时对变长序列的处理操作

栏    目:Python代码

下一篇:基于Django静态资源部署404的解决方法

本文标题:pytorch 更改预训练模型网络结构的方法

本文地址:http://www.codeinn.net/misctech/30174.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有