欢迎来到代码驿站!

Python代码

当前位置:首页 > 软件编程 > Python代码

简单了解Pandas缺失值处理方法

时间:2020-11-27 10:43:10|栏目:Python代码|点击:

这篇文章主要介绍了简单了解Pandas缺失值处理方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

判断数据是否为NaN:

pd.isnull(df),
pd.notnull(df)

判断缺失值是否存在

np.all(pd.notnull(data)) # 返回false代表有空值
np.any(pd.isnull(data)) #返回true代表有空值

处理方式:

  • 存在缺失值nan,并且是np.nan:
    • 1、删除缺失值:dropna(axis='rows')
      • 注:不会修改原数据,需要接受返回值
    • 2、替换缺失值:fillna(value, inplace=True)
      • value:替换成的值
      • inplace:True:会修改原数据,False:不替换修改原数据,生成新的对象
# 替换存在缺失值的样本的两列
# 替换填充平均值,中位数
movie['Revenue (Millions)'].fillna(movie['Revenue (Millions)'].mean(), inplace=True)
  • 不是缺失值nan,有默认标记的
    • 将不是nan的值替换成np.nan――df.replace(to_replace,value)
      • to_replace- 替换前的值―被替换的
      • value―要修改成的值,上岗的值
      • 再按照是nan的方式处理
# 把一些其它值标记的缺失值,替换成np.nan
wis = wis.replace(to_replace='?', value=np.nan)

SSL报错

以上数据在读取时,可能会报如下错误

URLError: <urlopen error [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:833)>

解决办法:

# 全局取消证书验证
import ssl
ssl._create_default_https_context = ssl._create_unverified_context

上一篇:Python简单进程锁代码实例

栏    目:Python代码

下一篇:python实现将读入的多维list转为一维list的方法

本文标题:简单了解Pandas缺失值处理方法

本文地址:http://www.codeinn.net/misctech/26688.html

推荐教程

广告投放 | 联系我们 | 版权申明

重要申明:本站所有的文章、图片、评论等,均由网友发表或上传并维护或收集自网络,属个人行为,与本站立场无关。

如果侵犯了您的权利,请与我们联系,我们将在24小时内进行处理、任何非本站因素导致的法律后果,本站均不负任何责任。

联系QQ:914707363 | 邮箱:codeinn#126.com(#换成@)

Copyright © 2020 代码驿站 版权所有